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Abstract In speech science, analyzing the shape of the tongue during human speech
production is of great importance. In this field, magnetic resonance imaging (MRI)
is currently regarded as the preferred modality for acquiring dense 3D information
about the human vocal tract. However, the desired shape information is not directly
available from the acquired MRI data. In this chapter, we present a minimally super-
vised framework for extracting the tongue shape from a 3D MRI scan. It combines
an image segmentation approach with a template fitting technique and produces a
polygon mesh representation of the identified tongue shape. In our evaluation, we
focus on two aspects: First, we investigate whether the approach can be regarded as
independent of changes in tongue shape caused by different speakers and phones.
Moreover, we check whether an average user who is not necessarily an anatomical
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expert may obtain acceptable results. In both cases, our framework shows promising
results.

1 Introduction

Shape analysis is of great importance in speech science. In this research area, an-
alyzing and understanding the shape and the motions of the human tongue during
the production of speech is of great interest. For example, a tongue model may be
integrated into virtual avatars for multimodal spoken interaction or computer-aided
pronunciation training. In the latter case, the user can be shown how to move the
tongue to produce a specific sound [9]. Furthermore, such a tongue model could be
used in articulatory speech synthesis to approximate the vocal tract area function.

Observing and imaging the tongue during speech is a challenging task, since it
is inside the mouth and therefore almost completely hidden from view. Thus, tra-
ditional imaging modalities based on light, such as photography, are of limited use
for acquiring information about the tongue. Currently, magnetic resonance imaging
(MRI) can be regarded as the state-of-the-art technique for imaging the human vocal
tract. This method is capable of providing 3D information about the inside of the
mouth of a speaker without being hazardous or invasive.

The data acquired by MRI has to be further processed to extract the desired
shape information, and manually extracting shape information from MRI scans can
be a tedious and time-consuming task. This motivates an extended version of our
framework [13] that combines image segmentation and template fitting to extract
the tongue surface from a 3D MRI scan in a minimally supervised fashion. The
only user input required by our method is a sparse set of annotated landmarks. Op-
tionally, the user may additionally crop the MRI scan to the region containing the
tongue for improved performance. We demonstrate experimentally that our method
is stable with respect to inaccurate landmarks, which implies that a user who is not
necessarily an anatomical expert is able to get acceptable results with only minimal
input.

It is desirable to represent the extracted tongue surface using a high level repre-
sentation. In this work, we choose as representation a polygon mesh. This represen-
tation has the advantage that it can be directly used in various fields of application,
as meshes can be used to produce piecewise linear approximations of scenes of
arbitrarily complex geometry and topology. The meshes can be textured and sub-
sequently rendered in real-time to produce photo-realistic images. This even holds
for large models, as polygon meshes can be easily represented in a hierarchy of
resolutions using subdivision [5, Chapter 1]. Furthermore, polygon meshes are of-
ten employed in computer graphics to generate animations of complex objects [5,
Chapter 9], and in computer vision to conduct a statistical analysis of a class of
shapes, as for example faces [7]. By using polygon models, such deformations and
statistical summaries can easily be computed for the extracted tongue surfaces. In
speech processing, polygon models of tongues have been used to generate acousti-
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cal simulations [4], and using polygon models for our meshes allows us to use the
extracted surfaces in existing simulation tools.

Our method uses a single generic template represented by a polygon mesh that
was constructed based on an MRI scan by a non-expert. Experiments indicate that
our approach has a success rate of 75 percent for the dataset of Adam Baker [3]
and the Ultrax project [1]. Furthermore, we show that our method is independent of
shape changes caused by different speakers and phones.

This chapter is organized as follows. Section 2 gives an overview of related work
and Section 3 describes our framework and elaborates on the motivation behind
the design. Section 4 provides background information on the datasets used as the
source of the 3D MRI scans in our experiments. It is worth noting that compared
to our previous work, we had data from more speakers available. In Section 5, we
focus on investigating whether our approach is speaker- and phone-independent, and
whether a non-expert user can achieve acceptable results. Finally, Section 6 gives
conclusions and discusses open problems.

2 Related work

As it is tedious to manually extract information from MRI scans, a number of meth-
ods have been proposed to facilitate this process. Here, we provide a brief overview
of recent methods.

The method of Peng et al. [22] aims at identifying the tongue’s contour in a 2D
mid-sagittal scan. It is based on an active contours approach [17] where a previously
trained shape model is used to control the evolution of the contour. This technique
was later extended by Eryildirim et al. [10] to align the contour’s end points to the
corresponding extremities of the tongue. More recently, Raessy et al. [23] showed
that it is possible to train oriented active shape models [20] in such a way that they
can be used to reliably identify the boundary of the tongue in 2D scans. These
methods depend on manually preparing a training set and are restricted to the 2D
case.

Lee et al. [16] proposed a framework for extracting the tongue from 3D dynamic
MRI in a minimally supervised fashion. The random walker technique [11], which
requires a user to manually place some seeds, was used as the base segmentation
method. This framework produces a low-level volume segmentation.

Harandi et al. [12] used a template-matching technique to extract a mesh repre-
sentation of the tongue from 3D MRI scans. A template is extracted from a source
scan by an anatomical expert. This template is then fitted to a target scan using color
information. Specifically, the mesh points are moved in such a way that the color
at the original point in the source scan is similar to the deformed point in the target
scan. This approach is limited by requiring an expert to provide the templates.
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3 Framework

Our framework consists of three main steps. First, we apply an image segmentation
technique to the MRI data to identify the spatial support of the tongue and related
tissue.

Second, we extract the surface points of the tissue, thereby reducing the data
to a purely geometric representation. This is motivated by the fact that it is rela-
tively easy to combine geometric information from different sources. For example,
the surface point cloud obtained from one scan might be incomplete. In this case,
the information obtained from a second scan of the same speaker could be used to
reconstruct certain missing data by simply adding the corresponding points to the
point cloud of the first scan.

Third, we apply a template fitting technique to obtain a polygon mesh repre-
sentation of the tongue surface from the point cloud. Using such a method has the
advantage that we can exploit prior knowledge about the shape of the tongue in the
form of a provided template. This is especially useful in situations where the point
cloud is noisy, incomplete, or contains additional information other than the tongue.

3.1 Interpretation of a scan as a 3D image

Before discussing our proposed method, we describe how an MRI scan can be
turned into a 3D image.

Formally, a scan is given by g : S→ R where S ⊂ R3 is a discrete domain in
the form of a rectangular box. The scan domain S contains the positions x at which
the scanner took the measurements. Thus, g(x) represents the density of hydrogen
molecules measured by the scanner at coordinate x. Each sample position represents
a point on a regular grid with grid spacings hx,hy, and hz.

A 3D image, on the other hand, is given by f : Ω → [0,255] where Ω ⊂ R3

is again a discrete domain in the form of a rectangular box. Here, f (y) is the gray-
value at voxel coordinate y. In contrast to the sample positions, however, these voxel
coordinates are arranged on a Cartesian grid with hx = hy = hz = 1.

This means we first have to find a mapping s : Ω → S from the voxel coordinates
in our image representation to the sample positions of the scan. Here, we can use
y = (x,y,z)> ∈Ω as an index to access the vertices of the regular grid in S, as

s(y) :=
(

xhx, yhy, zhz

)>
. (1)

To visualize the measured hydrogen density, we define a quantization operator
q : R→ [0,255] that maps the observed densities to 256 values. This allows us to
interpret the scan as 3D image f : Ω → [0,255] where

f (y) = q
(
g(s(y))

)
(2)
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Fig. 1 Two different slice
types of a 3D image showing
the human vocal tract. Left:
Sagittal slice. Right: Coronal
slice.

can be seen as the quantized gray-value representation of the hydrogen density at
sample position s(y).

In the following, we assume that the data was recorded in a standard sagittal
manner, and refer to an (x,y)-plane of an MRI scan as a sagittal slice and to a (y,z)-
plane of an MRI scan as a coronal slice. Both types of slices are shown in Figure 1.

3.2 Image segmentation

The first step of our method aims to identify the spatial support of the tongue. That
is, we wish to divide Ω into an object region ΩO and a background region ΩB. The
object region ΩO should contain points that are related to the tongue. However, it is
also allowed to contain regions that belong to other organic tissue. This relaxation is
necessary as in some images no boundary may be detectable between the tongue and
other tissues with which it is in contact, such as the palate. The background region
ΩB consists of parts of the scan we have no interest in. These are, for example,
bones, air, or other tissue not related to the tongue.

Figure 1 demonstrates that an object can be distinguished from the background
by using color information. This motivates the use of image segmentation tech-
niques that make use of color information to extract ΩO.

As we aim to apply our method to large datasets, the segmentation method must
satisfy two requirements. First, the required manual input from the user should be
minimal. Second, the segmentation method should be robust. To satisfy both re-
quirements, we compute segmentations using the method by Chan and Vese [8].
This method is robust and generates smooth boundaries between ΩO and ΩB, which
can later be used to derive clean surface normals.

The method by Chan and Vese requires as initialization a closed contour C that
separates Ω into ΩO and ΩB. In our approach, this initial contour can be computed
automatically: Given a sparse set of manually annotated landmarks L as described
in Section 5.1, a sphere can be placed at the centroid of these landmarks in Ω .
Alternatively, it can be positioned at the center of Ω if the image mainly shows the
tongue, as for example in Figure 2.

The approach evolves the initial contour C such that the gray-value variance in-
side the regions is minimized, i.e.
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Fig. 2 Example result of Chan-Vese in 2D. Left: Sagittal slice. Right: Resulting segmentation.
ΩO is colored in red, ΩB in blue. The initial contour used is shown as a white circle.

ECV(C) = ∑
x∈ΩO

(
f (x)−µΩO

)2
+ ∑

x∈ΩB

(
f (x)−µΩB

)2
+λ length(C), (3)

where ΩO and ΩB are the regions induced by C and µX represents the average gray-
value in region X . The method has a regularizer weighted by λ > 0 that tries to
minimize the length of the contour. To minimize the energy, we apply the standard
scheme of Chan and Vese. That is, we start with a continuous version of the energy
that uses a level set representation [21] of the contour, and subsequently derive the
Euler-Lagrange equation of this energy to set up a gradient descent approach that
is discretized using a finite differences implicit scheme. Figure 2 shows an example
result in 2D that used a circle as the initial contour.

Note that the remainder of our method is independent of the selected segmenta-
tion method, and any segmentation method can be freely selected if this is advanta-
geous for a specific dataset. In our preliminary experiments [13], we also explored
a graph cut method [6] for segmentation. However, we did not explore this option
further as approaches of the graph cut family require a significant amount of manual
input, rendering them impractical when processing large datasets.

3.3 Surface point extraction

Given a partition Ω = ΩO∪ΩB, we compute the surface information by extracting
surface points P∗ := {pi} of ΩO and normals N := {ni} for P∗, such that ni is the
normal at pi. Surface points pi are points of ΩO that have at least one neighboring
point q in ΩB. Surface normals are chosen to point towards the outside of ΩO. Note
that due to the relaxation we formulated earlier for ΩO, P∗ may contain surface
points belonging to other articulators than the tongue. Furthermore, P∗ is a subset of
Ω , i.e., the surface information was computed in the image domain. The template
fitting, however, should operate on the domain of the observed vocal tract to be
anatomically correct. Thus, we apply the mapping from Equation (1) to obtain the
correct surface information P as
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Fig. 3 Example result of the template fitting method. Top row: Sagittal slice of the used MRI scan
(left) and obtained point cloud (right). Bottom row: Template used in our approach (left) and
result of the template fitting (right).

P := {s(p) | p ∈ P∗}. (4)

The surface P consists of a loose collection of points, as shown in Figure 3.
Furthermore, the point cloud may be missing information and may contain data
other than the tongue. Therefore, surface reconstruction approaches like the Poisson
reconstruction [14] may produce undesirable results. To avoid this problem, in the
following, we utilize the information that a subset of P forms part of the surface of
a tongue.

3.4 Template fitting

We use a template fitting technique [25] to jointly find the subset of P represent-
ing the tongue and a polygon mesh representation of the tongue surface. That is,
we deform a template mesh M := (V,F) to match the point cloud data P. We use
a vertex-face representation of meshes, i.e., V := {vi} denotes the vertex set of the
mesh with vi ∈ R3 and F its face set. To obtain a deformation, the approach com-
putes a set A := {Ai} where Ai : R3→R3 is a rigid body motion for the vertex vi by
minimizing the energy
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EDef(A) = α
1
|V ∗| ∑

vi∈V ∗

(
distD

(
Ai(vi),arg min

p j∈P
‖Ai(vi)−p j‖

))

+β
1
|V | ∑

vi∈V

(
∑

v j∈N (vi)

distS
(
Ai,A j

))

+ γ
1
|L| ∑

(vi,qi)∈L

(
distL

(
Ai(vi),qi

))
. (5)

This energy consists of three terms. Each term is weighted by a non-negative value,
α,β , or γ , that is normalized according to the number of participating vertices in
the respective term. This normalization makes it easier to compare the influences of
the different terms.

The data term distD(·) measures the distance between the transformed vertex
Ai(vi) and the normal plane at its nearest neighbor. This term is minimized when
the template is close to the point cloud P. In our implementation, this term is only
evaluated at V ∗ ⊆ V to increase robustness to noise. In particular, a vertex vi is
ignored if the Euclidean distance between vi and its nearest neighbor is too large or
if the angle between the outer normals of vi and its nearest neighbor is too large. This
commonly used heuristic [2, 18] is meant to distinguish valid data observations from
invalid ones. Additionally, we do not consider vertices that are part of the landmark
set L to avoid distorting any manually provided correspondences.

The deformation smoothness term distS(·) measures the difference in rigid body
motion Ai between vi and the vertices of the neighborhood N (vi) that consists of
the one-ring neighbors of vi and vertices of the mesh within distance of 2 · res(M)
from vi where res(M) is the average edge length of the template mesh M. The min-
imization of distS(·) encourages the template to preserve its overall shape during
deformation, which helps to keep the mesh away from data points that do not be-
long to the surface of the tongue and allows missing parts to be filled in smoothly.
This term is active at all vertices.

Finally, the landmark term distL(·) is optional. This term computes the squared
Euclidean distance between pairs of manually annotated vertices vi ∈ V and corre-
sponding coordinates qi ∈R3 that are contained in a set of landmarks L := {(vi,qi)}.
Note that the coordinates qi do not have to be contained in P. By minimizing this
term, the approach will move the selected vertices to the user-provided coordinates.

We discover that minimizing both the data and the smoothness terms will move
the mesh to a subset of P that resembles a tongue-like surface.

We follow a similar strategy as Wuhrer et al. [25] to obtain a minimizer A of the
energy. Before performing the optimization, we perform a rigid alignment of the
template. This step uses the user-provided landmarks and the point cloud to find a
good scale and position for the template.

The energy given in Equation (5) is not differentiable with respect to A, which
prevents us from minimizing it directly. Therefore, we perform the optimization
by minimizing a series of differentiable energies Et

Def(A
t) where t ∈ [1, tmax]. The

energy Et
Def differs from the original energy EDef in the following way: In Et

Def, we
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use the minimizer of the previous energy in the series to transform the vertex in
distD(·): At−1

i (vi). This means that arg minp j∈P(·) no longer depends on At . Thus,
the energy becomes differentiable and we can use a quasi-Newton technique [19]
to compute the minimizer. Moreover, for tmax > 1, the weight β of the smoothness
term changes in each iteration. Given a base value β , the weights β t used in iteration
t are computed as

β
t = 2β − (t−1)

β

tmax−1
. (6)

This means that we start the optimization by promoting smooth transformations.
The weight is then gradually reduced until we arrive at the base weight β in the last
iteration.

After the minimization of the last energy, we obtain the sought transformations
A as Atmax . Note that we use the identity A0

i (vi) = vi as A0 that is needed in the
first energy E1

Def. Furthermore, we apply a coarse-to-fine strategy to cope with large
deformations.

Figure 3 illustrates an example of the template fitting.

4 Datasets

This study is evaluated on a large dataset of 12 speakers, and extends our previous
work [13], which only considered data from a single speaker. We use two MRI
datasets to validate our method, that of Adam Baker [3], and the full dataset from
the Ultrax project [1].

The Baker dataset contains static 3D MRI scans of a male speaker. 25 of these
scans are speech related and show vocal tract configurations for different phones.
This data was acquired as part of the Ultrax project, but released separately.

The remainder of the Ultrax dataset consists of static 3D MRI scans of 11 adult
speakers. Seven of these speakers are female and four are male. While scanning, the
subjects, who were all phonetically trained, were asked to sustain the articulatory
configurations for a given phone for around 20 seconds. Prompts were displayed to
the subject using a laptop connected to video-goggles. Each subject recorded scans
for the following phone set [i, e, E, a, A, 2, O, o, u, 0, @, s, S], with an additional scan
for the pose at rest. Simultaneous audio recordings were made using a FOMRI-III
fiber optic microphone. This microphone is specially designed for use in MRI scan-
ners, using both a pair of microphones and adaptive noise cancellation algorithms to
reduce the level of MRI scanner noise. Though it is not possible to remove the scan-
ner noise entirely, the use of this microphone does make it possible to monitor and
verify the subject’s phone production acoustically. The Ultrax dataset also contains
other types of MRI scans for all subjects, but those were not used in this work.

The scans were acquired using a Siemens Verio 3T scanner at the Clinical Re-
search Imaging Centre in Edinburgh. Each scan comprises 44 sagittal slices with
a thickness of 1.2 mm and an image size (whole head) of 320×320 pixels in the
image domain. In the scan domain, we have distances of hx = hy = 1.1875mm
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Fig. 4 Placement of the landmarks. Left: Selected vertices for the landmarks on the template. The
left image shows a front view of the template, the right one a view from the back. Right: Sagittal
and coronal slice showing an example of the corresponding user-provided landmarks on an MRI
scan.

and hz = 1.2mm, corresponding to a voxel size of 1.1875×1.1875×1.2 mm3. The
scans were acquired with an echo time of 0.93 ms and a repetition time of 2.36 ms.

5 Evaluation

The focus of this section is on investigating whether our approach can be regarded
as independent of shape changes caused by different speakers and phones. To show
this independence, we demonstrate that is possible to obtain satisfying results across
different speakers and phones by always applying the same procedure. To this end,
all parameters except for the landmarks are fixed for all scans.

In the following, we first outline how the template is created and how the scans
are prepared. We then describe experiments to evaluate the stability of the weights
in the template fitting, investigate whether our approach is applicable to different
speakers and phones, and analyze the robustness of our approach to erroneously
placed landmarks.

5.1 Template creation

The template is manually extracted from a scan of the Baker dataset. After the ex-
traction, we adjust the mesh to be symmetric to remove this particular bias towards
the original speaker. Note that the template only models the upper part of the tongue
surface and does not include its sublingual part. The template consists of 5864 ver-
tices and 11724 faces, and is shown in Figure 4.

We select seven vertices as landmarks. These vertices and an example of the cor-
responding user-provided coordinates on an MRI scan are shown in Figure 4. Five
landmarks are distributed on a sagittal slice that is located roughly at the center of
the tongue. Three of these landmarks are located at feature points that are relatively
easy to locate for an average user, namely the tongue root near the epiglottis and the
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pharynx (green landmark), the tongue tip (red landmark), and the position where
the tongue surface connects to its sublingual part (pink landmark). The remaining
two landmarks in the mid-sagittal slice are placed at approximately 1

3 and 2
3 of the

distance from the tongue tip to the root, corresponding to the tongue blade (yel-
low landmark) and back (orange landmark), respectively. We believe that using this
feature-free approach to select the tongue blade and back facilitates the landmark
placement. The tongue blade landmark serves as anchor for two additional lateral
landmarks that may be positioned using a coronal slice. These are located near the
left (blue landmark) and right (white landmark) boundaries of the tongue’s upper
surface and serve to add lateral information to the landmark set.

Note that not all landmarks are required for our approach. If the user does not
provide coordinates for a subset of the landmarks, these landmarks will simply be
ignored in the optimization process.

5.2 Scan selection and preparation

We consider the data of all available speakers to ensure high variance with respect to
speaker-specific anatomy. To obtain a high variance of intra-speaker tongue shape,
scans corresponding to the three corner vowels [A, i, u] are considered for each
speaker. These vowels show the tongue in different extreme positions, e.g. as far
back and low in the mouth as possible for [A] [15]. We discovered that one speaker
showed a high activity of the soft palate leading to contacts with the tongue. There-
fore, we removed scans of this specific speaker from further processing. Further-
more, we removed one scan from another speaker because a part of the tongue was
not visible.

After this selection process, the data is pre-processed using three steps. First,
each scan is cropped to a region of interest containing the vocal tract.

Second, each scan is segmented automatically using the Chan-Vese method.
Here, we use λ = 140 and initialize C to a sphere of radius 15 located at the center
of the image representation of the cropped scan. We found that this approach failed
to properly segment the scans of one speaker, and all scans of this speaker were re-
moved from further processing. After these steps, 29 point clouds derived from the
scans were available for further experiments.

Third, we manually select the landmark coordinates in each scan. To facilitate
this task, we developed a graphical user interface that allows landmarks to be placed
on the image representation of the scan. Subsequently, the landmark positions are
mapped to the scan domain. In our experiments, we encountered scans where the
placement of the two lateral landmarks posed a problem. Due to contact with other
tissue, the left and right boundaries of the tongue’s upper surface were difficult to
identify. We found that these landmarks are not always needed to obtain acceptable
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results. For our experiments, we use the 2 lateral landmarks for only 13 of the 29
scans.

Note that this workflow may be modified. In particular, it is possible to omit the
cropping step, thereby reducing the amount of manual pre-processing required of
the user. Working with the full scans produces the same results as working with the
cropped scans if the Chan-Vese method is initialized after pre-aligning the scans
based on the provided landmarks. However, working with the cropped scans de-
creases the processing time of the segmentation method and the memory require-
ments for computing the point cloud.

5.3 Experiments

As no ground truth is available, we evaluate the results by computing the Euclidean
distances between vertices on the deformed template and their nearest neighbors in
the point cloud. Since our template is incomplete, we ignore vertices at the bottom of
the mesh, as they are not part of the tongue’s boundary. To quantitatively summarize
the results, we compute cumulative error functions. For a qualitative evaluation, we
show the visual quality of some of the results.

In all following experiments, the parameters α = 1 and tmax = 20 are fixed. In
the data term, we use the same heuristic as [25] to identify valid data observations:
We consider only vertices of the template mesh M whose nearest neighbor in the
point cloud is at distance at most 5 · res(M) and whose normal deviates at most 60
degrees.

Influence of parameters

We first evaluate the stability of the weights β and γ used in the optimization. This
evaluation consists of two parts. First, we check if there is a weight β that produces
acceptable results for all scans by setting γ = 0 and testing the ten weights β =
1,2, . . . ,10. In this experiment, the landmarks are used only for rigid alignment.

The parameter value βoptimal = 4 represents a good compromise between close-
ness to the data and smoothness of the resulting mesh. This can be seen in Figure 5,
which shows the results for an example scan from the Baker dataset. On the one
hand, low weights for β lead to overfitting, which produces a very noisy mesh. On
the other hand, high weights for β reduce the amount of alignment because the
smoothness term has too much influence. Note that the very large distances visible
in the cumulative error function are due to holes in the corresponding point cloud
and can therefore be disregarded. We encountered 13 scans where this choice for β

produced suboptimal results. The poor performance in 4 of those scans was related
to palate contacts of the tongue or segmentation issues. In the remaining 9 scans,
the poor performance stems from template fitting related problems. For example,
the tongue tip of the template was aligned to the front palate region in some results.
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(a) Sagittal slice of the used MRI
scan.

(b) Generated point cloud.

(c) Result for β = 1. (d) Result for β = 4. (e) Result for β = 10.
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(f) Cumulative error functions for the different results.

Fig. 5 Example showing how the weight β of the smoothness term affects the result.
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Additionally, in some scans, parts of the template were not aligned to the data, as
shown in Figure 6(c).

Second, we analyze whether activating the landmark energy in equation (5)
can improve the results for fixed βoptimal. Specifically, we consider weights γ =
0.1,0.2, . . . ,1. Hence, for this experiment, the landmarks were used in the template
fitting.

Figure 6 shows that even using small values of γ can improve the results signif-
icantly. The figure shows a particular scan from the Ultrax dataset where activating
the landmark energy drastically improves the mesh alignment. On our dataset, the
value γoptimal = 0.1 led to the best results. For this parameter setting, 6 of the 9 scans
that had template fitting problems for γ = 0 are aligned correctly.

Evaluation of independence of speakers and phones

We now evaluate the template fitting results obtained for parameters βoptimal = 4 and
γoptimal = 0.1 across different speakers and phones. For these parameter settings, our
approach was successful for 22 of the 29 considered scans. These 22 scans include
scans from all 10 speakers for which scan preparation was successful and scans
from all three considered phones. To evaluate whether the method is biased towards
specific speakers or phones, we consider the set of cumulative error plots across
different phones and speakers. To avoid large distances originating from potential
holes in the point cloud, we only consider distances below 5 mm in the error com-
putation. Figure 7(a) shows the distribution of cumulative error plots for different
phones, and Figure 7(b) shows the distribution of cumulative error plots for differ-
ent speakers. Note that all cumulative error plots are similar, and hence the variance
between the plots is low. This shows that for our dataset, there is no significant bias
towards any specific speaker or phone, and leads us to conclude that our approach
is speaker- and phone-independent.

Evaluation of noisy landmark placement

In the final experiment, we analyze the robustness of our approach against errors in
the coordinates of the landmarks provided by the user. To this end, we add Gaussian
noise with mean 0 mm and standard deviation 5 mm to each component of the origi-
nal coordinates to simulate the input of an inexperienced user. We only consider the
scans where our framework succeeded and used the optimal weights β = βoptimal
and γ = γoptimal.

Errors in the landmarks do not have a significant effect on the results. In all
but one of the tested scans, our approach obtains acceptable results even when noisy
landmarks are used. Figure 8 shows a representative example of a deformed template
computed using noisy landmarks. Note that the shape of the deformed templates
obtained with clean and noisy landmarks is globally quite similar and only leads to
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(a) Sagittal slice of the used MRI
scan.

(b) Generated point cloud.

(c) Result for deactivated landmark
energy (γ = 0).

(d) Result for active landmark en-
ergy (γ = 0.1).
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(e) Cumulative error functions for the two results.

Fig. 6 Example showing how the landmark energy can help to improve the result.
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(a) Cumulative error of the results grouped by phone. The plot shows the mean error (line) and
the standard error (ribbon) of all results belonging to the corresponding phone.
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(b) Cumulative error grouped by speaker. Missing lines indicate that no result was obtained for
the specific phone.

Fig. 7 Visualizations of the cumulative error for the 22 scans where our approach succeeded.
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(a) Sagittal slice of the used MRI
scan.

(b) Generated point cloud.

(c) Result for the original land-
marks.

(d) Result for landmarks with
added noise.
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Fig. 8 Example showing the effect of noise in the landmarks.
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localized differences. However, we encountered one scan where the noisy landmarks
lead to a suboptimal result.

5.4 Discussion

Our approach succeeded in 75 percent of the selected scans for a fixed template and
fixed parameter settings. Furthermore, the proposed framework did not show any
significant bias towards a specific phone or speaker, which indicates that it is phone-
and speaker-independent. Here, we want to note that in the study of Harandi et al.
[12] only the speaker-independence of their approach was analyzed. In particular,
they only considered the tongue in the resting position and evaluated their method
across 18 speakers. Moreover, our approach is robust against errors in the landmarks
provided by the user. Thus, even an inexperienced user may obtain acceptable results
using our method.

The observed failure cases stem from three main causes. Issues with the seg-
mentation approach forced us to discard data from certain speakers completely, or
prevented our framework from producing acceptable results. Using more than one
segmentation technique may help to overcome these problems. Multiple segmenta-
tion results could be generated, and the user could then select the best one to use in
the subsequent processing steps.

Furthermore, for scans where a contact between tongue and palate occurred, find-
ing surface information of the tongue in the contact area is difficult because it may
not be visible, which leads to a hole in the point cloud. Note that if we reconstruct
the hard palate surface in this region, it may be used to represent the portion of the
tongue surface in contact with the palate. For a point cloud P where such a hole
is present due to a contact in the region of the hard palate, we explored the fol-
lowing approach to reconstruct the palate. First, a scan is selected where the hard
palate is clearly visible, and the subset of points H representing the palate surface
is extracted. Second, the hard palate is manually aligned to match the vocal tract
configuration in P, which results in the set of transformed points H∗. Note that this
alignment is easy to perform manually because the hard palate can only undergo
rigid body motions. Third, P and H∗ are merged into a single point cloud, which
is used in the template fitting. This palate reconstruction can improve the results in
cases where palate contact results in incomplete point clouds.

Finally, for the scans where the template fitting failed, we suspect that using more
landmarks could help to align the template correctly to the point cloud.

6 Conclusion

In this chapter, we presented a minimally supervised approach to extract mesh rep-
resentations of the human tongue from MRI data of the vocal tract. The experiments
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performed revealed promising results, as the presented approach leads to results of
high quality in 75 percent of our tests. An important feature of the approach is its
independence with respect to changes in tongue shape due to different speakers and
phones. Furthermore, the approach is robust to noise in the manually placed land-
marks.

We leave the following open problems for future work. A palate reconstruction
could help to significantly increase the number of scans that can be processed suc-
cessfully by our approach. Hence, it is important to facilitate the process of palate
reconstruction. We plan to replace the process of manually aligning the palate sur-
face to the MRI data with a rigid alignment approach based on landmarks that are
not necessarily located on the tongue.

Our template fitting could be improved by including more information, such as
the sublingual part of the tongue, more annotated landmarks, or typical MR-values
at the vertices. Such modifications may improve the performance of the template
fitting.

Moreover, the evaluation of our approach could be made more thorough by using
more datasets and comparing the results to other methods in literature. However,
datasets in literature are in general not easy to access due to privacy concerns for the
recorded subjects.

For the future, we also think that it would be worthwhile to explore the perfor-
mance of robust unsupervised methods, like for example [24], in the segmentation
part of the framework. Detecting the position of the landmarks automatically would
be another interesting modification. Both improvements could make the framework
more accurate and further reduce the input required by the user or even make it fully
automatic.
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