
ANALYSIS OF COARTICULATION USING EMA DATA
WITH A STATISTICAL SHAPE SPACE MODEL OF THE TONGUE

Alexander Hewer1,2, Ingmar Steiner1,3, Korin Richmond4

1Multimodal Computing and Interaction, Saarland University, Germany
2Saarbrücken Graduate School of Computer Science, Germany

3audEERING GmbH, Gilching, Germany
4Centre for Speech Technology Research, University of Edinburgh, UK

hewer@coli.uni-saarland.de

Abstract: This study proposes a novel way to analyze the articulatory features of
diphones in electromagnetic articulography (EMA) recordings by using a statistical
tongue model to construct a speaker-independent articulatory space. Initial statisti-
cal analysis shows that trajectories from different instances of the same diphone are
similar to each other in this space, which implies that it is a suitable representation
to study coarticulation effects.

1 Introduction

It is well-known that speech is not simply a concatenation of isolated sounds, but is produced by
articulatory movements in the vocal tract which transition from the target configuration of one
phone to the next in a dynamic and fluent manner. This influence of phonetic context on speech
production is referred to as coarticulation, and its manifestation can be measured both directly
– e.g., through intra-oral motion capture such as electromagnetic articulography (EMA) – and
in the resulting acoustic speech signal.

When speech is segmented into a sequence of discrete units, one possible representation
is that of diphones, which comprise two contiguous half-phones ranging from the (presumed
stable) center of one phone to the center of the next. Since diphones capture the immediate
phonetic context, they preserve short-range coarticulation, and as such, are an ideal base unit
for analyzing the related coarticulation effects.

However, the direct analysis of articulation and coarticulatory effects – even at the lo-
cal level of diphones – is complicated by the fact that different instances of the same phone
sequence have different temporal domains; moreover, comparing the same phone sequences
across multiple speakers adds factors such as individual differences in vocal tract anatomy and
articulation strategy.

Previous work applying EMA to the study of coarticulation has compared patterns in raw
coil motion trajectories or derived statistical measures; Iskarous et al. [1] present a summary
of multiple relevant studies and discuss the implications. However, in the past, the analysis of
variability between utterances and speakers was typically limited to the EMA data, and a major
drawback of this modality is the fact that the tongue surface, or even mid-sagittal contour,
cannot be directly observed [2].

In order to model the dynamic aspects of coarticulation in a way that covers the entire
tongue surface and allows a direct comparison of different instances of the same phone tran-
sitions in a speaker-independent manner, we can turn to a statistical shape space model of the
tongue [3] that can separate speaker identity and tongue pose (i.e., phone identity). This model
is constructed from magnetic resonance imaging (MRI) speech production data of multiple
speakers, and can be fitted to the three-dimensional (3D) movements of sparse point sets, such
as EMA fleshpoints on the tongue, as trajectories in a low-dimensional parameter space.
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2 Statistical tongue model as articulatory space

This study uses a multilinear statistical tongue model [3] to represent tongue shape configura-
tions with two sets of parameters, P ⊂ Rm and S ⊂ Rn. The speaker parameters S model the
anatomical properties of the tongue shape, while the tongue pose parameters P control the ac-
tual pose related features. Both spaces have the dimensions m and n that should be chosen in
such a way that the model is not too complex; therefore, low-dimensional spaces are preferable.
As the shape representation, a polygon mesh is used that allows to model the whole 3D surface
of the tongue. Basically, a polygon mesh is generated from the model by providing the param-
eters s ∈ S and p ∈ P. Furthermore, statistical measures are attached to s and p that describe
how realistic the generated tongue shape is. In particular, multivariate Gaussian distributions
are fitted to the parameter spaces. For S, N (µs,I) is used, where µs corresponds to the mean
speaker parameter. Accordingly, N (µp,I) is fitted to P where µp corresponds to the mean
pose parameter. Both means are derived during the model construction process. The actual
model is obtained by analyzing volumetric MRI recordings that show speech-related vocal tract
configurations.

Statistical models have been used successfully in literature for registering EMA data [e.g.,
4, 5, 6], i.e., the positional data provided by the articulograph was used to derive the 3D sur-
face of the tongue. More importantly, the above description implies that the model treats the
tongue pose features independently from the anatomical features. This means that P can be
seen as an articulatory space, that is, a space where tongue shapes associated with two different
points in the space only differ with respect to their articulatory features. This property makes
the model ideally suited for studying articulatory phenomena, like for example, coarticulation
effects during speech production.

In contrast to our previous paper [3] which used the Ultrax dataset [7] to derive the model,
in the present study we use the MorphDB dataset [8] to construct the model. This dataset
provides access to MRI recordings of 17 native speakers of American English. The phonetic
inventory provides a balance between 13 vowels and 14 consonants: [@, eI, æ, i:, E, Ç, I, oU,
u:, O:, 2, A:, U, f, Z, h, l, m, n, N, ô, s, S, T, ð, v, z]. This is different from the Ultrax dataset
that mainly focused on vowels and the two sibilants [s] and [S]. The present study also uses the
measurements of the pilot speaker that were kindly provided by Sorensen et al., which results
in data collected from 18 speakers.

The data was processed and evaluated in a way similar to the approach described by Hewer
et al. [3]. The corresponding evaluation of the resulting model led to the decision to select m= 6
and n = 8. In this regard, it is important to note that a comparison between the new model and
the one derived from the Ultrax data revealed that the new model was superior with respect to
all investigated evaluation metrics.

3 Mapping EMA to the articulatory space

EMA is a well-established modality for investigating the dynamics of speech production by
capturing the intra-oral motion of the tongue [9, 10, 11]. Although the temporal resolution
of modern articulograph devices is very high, the spatial coverage of this modality is very
limited: often, only 3 to 5 points on the tongue can be tracked in order to avoid impairing the
recorded subject’s articulation too much, which makes interpretation of such data very difficult.
Moreover, rotational measurements of EMA coils are often unreliable, so the tongue is modeled
based only on positional data of the selected fleshpoints. Here, the question arises how such
sparse positional data may be mapped into the articulatory space described by the tongue pose
parameters of the aforementioned tongue model.
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The presented model can be used to register EMA data, i.e., to obtain parameters s and p
at each time frame of the EMA recording such that the generated tongue mesh of the model
is near the positional data of the associated tongue coils. To this end, first a correspondence
between tongue coils and tongue mesh surface points has to be defined that remains fixed for
the entire registration process. These correspondences may be provided manually, or they can
be derived in a semi-supervised way. Afterwards, an energy optimization strategy is applied to
find good values for [s]t and [p]t where [·]t denotes the corresponding parameters at time step t
of the recording. This study uses the following energy to perform the registration:

E([s]t , [p]t) = α Edata([s]t , [p]t)+β Ebias([s]t , [p]t)+ γ Ecoherence([s]t , [p]t). (1)

The data term Edata(·) is minimized at time t if the distance between the tongue EMA coils and
the associated surface points of the tongue mesh for the parameters [p]t and [s]t is small. The
mean bias term Ebias(·) produces energy in proportion to how far away the current values of
the parameters are from their respective mean. Penalizing the distance to the mean serves the
purpose of avoiding unrealistic tongue shapes and providing the registration approach with ad-
ditional information about the mean shape of the tongue, which may help to deal with the data
sparseness of the EMA modality. Finally, the term Ecoherence(·) tries to enforce a temporal con-
sistency between consecutive time frames by penalizing differences between the corresponding
parameter values. The positive weights α,β , and γ influence the importance of the individual
terms. However, the above process optimizes both the speaker and the pose parameters, which
implies that the strategy allows anatomy and pose to change over time and thus fails to reduce
the data to purely articulatory features represented by the tongue pose parameters. As a remedy,
the speaker anatomy can be fixed to appropriate values and the energy in Equation (1) is mini-
mized again to perform a fixed speaker registration. These values can be obtained by averaging
the results of the first registration using Equation (1), the full optimization registration. The
result of the fixed speaker registration is then the desired mapping of the EMA data into the
articulatory space described by the tongue pose parameters. Note only a brief summary of the
registration and mapping process is provided here. For full detail, the reader is referred to our
previous work in this area [3].

To analyze coarticulatory effects, the results of the fixed speaker registration may be used:
they represent the articulatory gestures as trajectories in a low-dimensional space that is speaker-
independent. Here, it is of interest to analyze how the overall shape of these trajectories differs
across different instances of the same phone transitions. To this end, we can investigate short-
range coarticulation by focusing on the transitions from one phone’s steady state to the next;
the first phone’s second half and the second phone’s first half comprise a diphone, and we will
use this as the basic unit for our analysis of coarticulation.

To transform a given speech corpus into a form suitable for diphone analysis in the artic-
ulatory domain of the tongue model, the following operations are performed: first, instances
of the diphone of interest are time normalized in such a way that the diphone starts at time 0
and ends at 1. Furthermore, the time 0.5 corresponds to the first time frame of the second half-
phone comprising the diphone. This time normalization step is necessary because the durations
of the individual instances differ from each other. In the next step, the normalized instances are
interpolated by means of natural splines. The interpolation results are used to resample the data
at equidistant points, which makes the different instances directly comparable to each other.
Finally, the trajectories of each parameter are shifted such that they pass through 0 at time 0.5.
This shifting operation serves the purpose of making the overall shape directly comparable. As
a result of this processing, both the time and model parameter dimensions are unit-less.

298



T1
T2 T3

Figure 1 – Illustration of tongue coil layout for the mngu0 dataset (left, adapted from [12]) and corre-
sponding tongue mesh surface points (right). Spheres on mesh highlight the corresponding vertices.
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Figure 2 – Histogram of phone occurrence in the mngu0 day 1 dataset. The phone [Õ] is omitted because
it only occurs once.

4 Experiments

This section is dedicated to applying the proposed analysis strategy to actual EMA recordings.
To this end, the mngu0 dataset [12, 13] is used. This corpus contains EMA recordings and time-
aligned phonetic transcriptions of a single male speaker of British English. In particular, over
2000 utterances were recorded that were selected from English newspaper texts with the goal of
maximizing the coverage of context sensitive diphones. All data was acquired using a Carstens
AG500 articulograph1 at a sampling rate of 200 Hz. The recordings were performed over two
days where a different layout for the EMA coils was used on each day. In this experiment, the
recordings of the first day are used, which consist of 1354 utterances corresponding to 67 min
of recorded speech.

On this day, the coil layout shown in Figure 1 was applied. This figure also depicts the cor-
responding surface points on the tongue mesh that were used during the registration operation.

The actual data used in the experiments corresponds to the the following distribution pack-
ages that were downloaded from the mngu0 website:2

1. Day1 basic EMA data, head corrected and unnormalized (v1.1.0)
2. Day1 transcriptions, Festival utterances and ESPS label files (v1.1.1)

The label files provide insight into the phonetic coverage of the recorded speech material. A
histogram showing the phone distribution is shown in Figure 2. The label files are also critical

1Carstens Medizinelektronik GmbH, Bovenden, Germany; http://www.articulograph.de/
2http://mngu0.org/
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Figure 3 – Cumulative error for the two registrations of the mngu0 data.

Full registration Fixed speaker registration

Mean Std. dev. Min Max Mean Std. dev. Min Max

Error (mm) 0.59 0.15 0.23 1.41 0.75 0.27 0.24 4.05

Table 1 – Error statistics for the two registrations of the mngu0 data.

for the diphone analysis: they describe when a specific phone was produced in an utterance and
thus allow to extract the speech segments belonging to the diphones of interest. It is important
to note that the label information is ignored during the actual registration of the EMA data.

To perform the registration, the following parameters were selected: α = 1,β = γ = 5.
These settings were manually tuned to obtain visually satisfying results. Before turning to the
diphone-based analysis, it is vital to verify the quality of the registration experiments. To this
end, the average Euclidean distance between EMA coils and corresponding mesh surface points
was computed at each time frame.

Results of this evaluation are shown in Figure 3 and Table 1. The results reveal that the both
registrations provide acceptable results: if all parameters are used during the registration, nearly
all errors are below 1 mm. Fixing the speaker parameters to the estimated anatomy and only
optimizing the pose parameters leads to larger errors. However, they are mostly below 1.5 mm.
Furthermore, the mean error only increases by a small amount. The slightly worse performance
of the fixed speaker result can be attributed to the fact that in this case the registration has fewer
parameters for adapting the tongue model to the EMA coil positions.

Having validated that the mapping to the articulatory space is of acceptable quality, we
now turn to the described diphone-based analysis. Here, the three most frequent diphones in the
dataset are selected for analysis:

1. [ð_@] (693 instances)
2. [t_@] (582 instances)
3. [@_n] (523 instances)

However, only instances were counted and selected where at least one sample per participating
phone is available in the diphone segment. This is due to the fact that the used articulograph
might have failed to capture any sample of some phones due to its acquisition rate.

Results of the analysis are shown in Figure 4, where the mean trajectories and the asso-
ciated standard deviation are visualized. The corresponding plots provide interesting insights:
the overall shape of the trajectories is very consistent near the center of the diphone (time 0.5),
which is reflected by small standard deviations. This observation implies that around the di-
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(a) Trajectories for [ð_@] diphone
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(b) Trajectories for [t_@] diphone
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(c) Trajectories for [@_n] diphone

Figure 4 – Visualization of the tongue pose trajectories for the three most frequent diphones. Plots show
the mean trajectory (line) and the standard deviation (ribbon).
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phone center, patterns in the trajectories of the six parameters may be present that could be used
to identify the corresponding diphone. As these patterns occur in the articulatory space, they
may be considered to be speaker-independent. Moving to the boundaries of the diphone causes
the standard deviations to increase, which implies that the trajectories become less consistent.
This observed behavior could be related to the context of the diphone: near the boundaries of
the diphone segment, the tongue shape configuration is affected by coarticulation effects, i.e.,
it is influenced by the adjacent phones of the current diphone. Thus, we may conclude that the
articulatory space described by the tongue pose parameters p ∈ P is a suitable representation
for analyzing and visualizing coarticulation effects.

5 Conclusion

The current study has presented a way of analyzing coarticulation effects by mapping EMA data
into an articulatory space. This articulatory space is provided by the tongue pose parameters of
a multilinear tongue model that separates anatomical and tongue pose related shape differences.
Thus, mapping data into this space leads to a representation that may be regarded as speaker-
independent. Initial results from an analysis of diphones show that the chosen representation
can be used to observe coarticulation effects during speech production. In particular, the results
indicate that there is in fact a stable region around the diphone center where the shape of the
trajectories of the pose parameters is consistent.

In the future, the acquired diphone data in the articulatory space could be analyzed to train
a model for synthesizing diphone trajectories in this space. Afterwards, these trajectories could
be transferred to an arbitrary speaker to create animations of the entire tongue surface by adapt-
ing the speaker parameters accordingly. Furthermore, it would be worthwhile to investigate if
pose parameter patterns are identifiable that could be used to detect diphones or articulatory
gestures. Finally, it would be important to validate the hypothesis that the representation in the
articulatory space is speaker-independent by analyzing a multi-speaker EMA dataset and com-
paring the trajectories across speakers, which could confirm that the used mapping also removes
any features from the data that describe the speaker-specific articulation strategy.
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