
Computational Semantics

Aljoscha Burchardt
Alexander Koller

Stephan Walter

ESSLLI 2004, Nancy

Abstract

The most central fact about natural language is that it has meaning. Semantics is the
study of meaning. In formal semantics, we conduct this study in a formal manner. In
computational semantics, we’re additionally interested in using the results of our study
when we implement programs that process natural language. In this course, we show how
formal semantic representations can be computed and used in simple inference systems.
This material is part of a one semester course that has been developed within the project
"MiLCA" ([3]), funded by the German Ministry of Education and Research. The mate-
rial was generated using the OzDoc-Tool ([4]). As it was originally designed to be dis-
seminated in HTML format, some formatting of this black and white print version is not
optimal. The full course material including exercises and Prolog code is available at [2].
Parts of this reader are loosely based on an early version of the course on computational
semantics by Patrick Blackburn and Johan Bos [1] and materials contributed by Michael
Kohlhase. All errors are our own.

Computerlinguistik, Universität des Saarlandes
Saarbrücken, Germany

August 2004

{albu|koller|stwa}@coli.uni-sb.de

Contents

1 Semantic Construction 1

1.1 Introduction . 1

1.2 First-Order Logic: Basic Concepts 2

1.2.1 Vocabularies . 2

1.2.2 First-Order Languages . 3

1.2.3 Building Formulas . 3

1.2.4 Bound and Free Variables 4

1.2.5 Notation . 6

1.2.6 Representing formulas in Prolog 6

1.3 Building Meaning Representations 7

1.3.1 Being Systematic . 8

1.3.2 Being Systematic (II) . 8

1.3.3 Three Tasks . 9

1.3.4 From Syntax to Semantics 9

1.4 The Lambda Calculus . 11

1.4.1 Lambda-Abstraction . 11

1.4.2 Reducing Complex Expressions 12

1.4.3 Using Lambdas . 13

1.4.4 Advanced Topics: Proper Names and Transitive Verbs . 15

1.4.5 The Moral . 17

1.4.6 What’s next . 18

1.4.7 [Sidetrack:] Accidental Bindings 18

1.4.8 [Sidetrack:] Alpha-Conversion 19

1.5 Implementing Lambda Calculus 20

1.5.1 Representations . 20

1.5.2 Extending the DCG . 21

1.5.3 The Lexicon . 21

1.5.4 A First Run . 22

1.5.5 Beta-Conversion . 22

1.5.6 Beta-Conversion Continued 23

1.5.7 Running the Program . 24

2 Towards a Modular Architecture 27

2.1 Architecture of our Grammar . 27

2.2 The Syntax Rules . 29

2.2.1 Ideal Syntax Rules . 29

2.2.2 The Syntax Rules we will use 30

2.3 The Semantic Side . 31

2.3.1 The Semantically Annotated Syntax Rules 31

2.3.2 Implementing combine/2 for Functional Application . . . 32

2.4 Looking Up the Lexicon . 33

2.4.1 Lexical Rules . 34

2.4.2 The Lexicon . 34

2.4.3 ‘Special’ Words . 35

2.4.4 Semantic Macros for Lambda-Calculus 36

2.5 Lambda at Work . 37

3 Scope and Underspecification 39

3.1 Scope Ambiguities . 39

3.1.1 What Are Scope Ambiguities? 39

3.1.2 Scope Ambiguities and Montague Semantics 40

3.1.3 A More Complex Example 42

3.1.4 The Fifth Reading . 43

3.1.5 Montague’s Approach to the Scope Problem 43

3.1.6 Quantifying In: An Example 44

3.1.7 Other Traditional Solutions 44

3.1.8 The Problem with the Traditional Approaches 45

3.2 Underspecification . 46

3.2.1 Introduction . 46

3.2.2 Computational Advantages 48

3.2.3 Underspecified Descriptions 49

3.2.4 The Masterplan . 49

3.2.5 Formulas are trees! . 51

3.2.6 Describing Lambda-Structures 52

3.2.7 From Lambda-Expressions to an Underspecified Descrip-
tion . 53

3.2.8 Relating Constraint Graphs and Lambda-Structures . . . 54

3.2.9 Sidetrack: Constraint Graphs - The True Story 54

3.2.10 Sidetrack: Predicates versus Functions 56

4 Constraint Solving 59

4.1 Constraint Solving . 59

4.1.1 Satisfiability and Enumeration 59

4.1.2 Solved Forms . 60

4.1.3 Solved Forms: An Example 61

4.1.4 Defining Solved Forms . 62

4.2 An Algorithm For Solving Constraints 63

4.2.1 The Choice Rule . 63

4.2.2 Normalization . 64

4.2.3 The Enumeration Algorithm 65

4.3 Constraint Solving in Prolog . 66

4.3.1 Prolog Representation of Constraint Graphs 66

4.3.2 Solve . 68

4.3.3 Distribute . 69

4.3.4 (Parent) Normalization . 69

4.3.5 Redundancy Elimination 70

4.4 Semantics Construction for Underspecified Semantics 71

4.4.1 The Semantic Macros . 71

4.4.2 The combine-rules . 73

4.5 Running CLLS . 76

5 Inference in Computational Semantics 79

5.1 Basic Semantic Concepts . 79

5.1.1 Models . 80

5.1.2 An Example Model . 80

5.1.3 Satisfaction, Assignments 81

5.1.4 Interpretations and Variant Assignments 82

5.1.5 The Satisfaction Definition 82

5.1.6 Truth in a Model . 83

5.1.7 Validities . 83

5.1.8 Valid Arguments . 84

5.1.9 Calculi . 85

5.2 Tableaux Calculi . 86

5.2.1 Tableaux for Theorem Proving 86

5.2.2 Tableaux for Theorem Proving (continued) 87

5.2.3 Summing up . 88

5.2.4 Using Tableaux to test Truth Conditions and Entailments 90

5.2.5 An Application: Conversational Maxims 91

5.2.6 The Maxim of Quality . 92

5.2.7 The Maxim of Quantity . 93

5.3 Tableaux Web-Interface . 94

6 Tableaux Implemented 95

6.1 Implementing PLNQ . 95

6.1.1 Literals . 95

6.1.2 Complex Formulae: Negation 96

6.1.3 Complex Formulae: Conjunctive Expansion 97

6.1.4 Complex Formulae: Disjunctive Expansion 97

6.1.5 An Example - first Steps 98

6.1.6 An Example - final Step 99

6.1.7 Another Example . 100

6.1.8 Two Connectives . 102

6.2 Wrapping it up (Theorem Proving) 103

1

Semantic Construction

In this chapter, the central question we’re going to look at is the following: ‘Given a
sentence, how do we get to its meaning?’ And, being programmers, the next thing that
interests us is: ‘How can we automate this process?’ This is, we’re going to look at the
task of meaning or semantic construction . But one of the first things we’re going to
see is that syntactic structure plays a crucial role in meaning construction.

1.1 Introduction

Meaning Representations

Before looking at the details of semantics construction, there’s one big question that
we have to answer: Meaning as such is a very abstract concept. It’s not at all easy to
imagine what it is to ‘get to the meaning’ of a sentence, let alone to ‘construct’ it from
that sentence. To study meaning, and especially to deal with it on a computer, we need
a handle on it, something more concrete: We shall work with meaning representation
s - strings of a formal language that has technical advantages over natural language. In
this chapter, we will represent meanings using formulas of first-order logic.

For instance, we will say that the meaning of the sentence ‘Every man walks’ is rep-
resented by the first order formula

�
x � MAN � x ��� WALK � x ��� , and that the formula

LOVE(JOHN, MARY) represents the meaning of the natural language sentence ‘John
loves Mary’.

So basically, this chapter will be concerned with finding a systematic way of translating
natural language sentences into formulas of first order logic (and writing a program that
automates this task). Here’s what we will do:

1. We will start with a very short repetition of some central concepts of first order
logic.

2. Then, we will show how to represent first order formulas - thus, our target rep-
resentations - in Prolog.

3. Next, we will discuss theoretically some of the basic problems that arise in se-
mantic construction, introduce λ-calculus, and show why it is our tool of choice
for solving these problems.

4. Finally we will turn to our implementation: We give Prolog code for the basic
functionalities of λ-calculus, and then show how to couple λ-based semantic
construction with our first, DCG-based, parsing-predicates.

2 Chapter 1. Semantic Construction

1.2 First-Order Logic: Basic Concepts

In order to talk about meanings, we need a way for representing them. In this chapter,
we’re going to use the language of first-order logic for this purpose. So, when we
say that we construct a meaning representation for some sentence, that means that we
construct a formula of first-order logic that we take to represent this meaning.

You may say: ‘What’s the point in that? You’re not giving the meaning of that sentence,
you’re just translating it to some artificial language that nobody uses.’

Is the situation really like that? No! Using first-order logic as a meaning-representation
language has many advantages. Here are two of them:

� First of all, first order logic isn’t just some artificial language that nobody uses.
There is the truth-functional interpretation (see Chapter 5) telling us unam-
bigously under which conditions formulas hold true and what the symbols they’re
made of mean. In other words, we have a formally precise conception of how our
first order meaning representations relate to certain situations in the world. And
we can compare this to our intuitions about the truth-conditions of the natural
language sentences under consideration. That way we can judge the adequacy
of our first-order formulas as meaning representations.

� Second, first order logic is a formal language with desirable properties such as
having a simple, well defined (and unambigous) syntax. This makes it fit for use
with computer programs.

We assume that you’ve already heard about first order logic. In the following we’ll only
shortly review its syntax and postpone the discussion of semantic concepts like truth
or models for formulas to Section 5.1. In the rest of this chapter it’s enough to have
some intuition about what the right first order formula is for a given sentence. So as
regards semantics, all we will do is sometimes give rough natural language equivalents
to first-order formulas and their building blocks, to help you get this intuition.

1.2.1 Vocabularies

Intuitively, a vocabulary tells us the language the ‘first-order conversation’ is going to
be conducted in. It tells us in what terms we will be able to talk about things. Here is
our first vocabulary:

��� MARY 	 JOHN 	 ANNA 	 PETER
�	��
� LOVE 	 2 ��	�� THERAPIST 	 1 ��	�� MORON 	 1 ��
��
Generally, a vocabulary is a pair of sets:

1. The first set tells us what symbols we can use to name certain entities of special
interest. In the case of the vocabulary we have just established, we are informed
that we will be using four symbols for this purpose (we call them constant symbol
s or simply name s), namely MARY, JOHN, ANNA, and PETER.

1.2. First-Order Logic: Basic Concepts 3

2. The second set tells us with what symbols we can speak about certain properties
and relations (we call these symbols relation symbol s or predicate symbol s).
With our example vocabulary, we have one predicate symbol LOVE of arity 2
(that is, a 2-place predicate symbol) for talking about one two-place relation, and
two predicate symbols of arity 1 (THERAPIST and MORON) for talking about (at
most) two properties.

As such, the vocabulary we’ve just seen doesn’t yet tell us a lot about the kinds of
situations we can describe. We only know that some entities, at most two properties,
and one two-place relation will play a special role in them. But since we’re interested
in natural language, we will use our symbols ‘suggestively’. For instance, we will
only use the symbol LOVE for talking about a (one-sided) relation called loving, and
the two symbols THERAPIST and MORON will serve us exclusively for talking about
therapists and morons. With this additional convention, the vocabulary really shows us
what kind of situations the conversation is going to be about (formally, it gives us all
the information needed to define the class of models of interest - but we said that we
won’t go into this topic here). Syntactically, it helps us define the relevant first-order
language (that means the kinds of formulas we can use). So let’s next have a look at
how a first order language is generated from a vocabulary.

1.2.2 First-Order Languages

A first-order language defines how we can use a vocabulary to form complex, sentence-
like entities. Starting from a vocabulary, we then build the first-order language over that
vocabulary out of the following ingredients:

The Ingredients

1. All of the symbols in the vocabulary. We call these symbols the non-logical
symbols of the language.

2. A countably infinite collection of variables x, y, z, w and so on.

3. The Boolean connectives � (negation), � (implication), � (disjunction), and �
(conjunction).

4. The quantifiers
�

(the universal quantifier) and � (the existential quantifier).

5. The round brackets) and (. (These are essentially punctuation marks; they are
used to group symbols.)

Items 2-5 are called logical symbols. They are common to all first-order languages.
Hence the only aspect that distinguishes first-order languages from one another is the
choice of non-logical symbols (that is, of vocabulary).

1.2.3 Building Formulas

Terms

Let’s suppose we’ve composed a certain vocabulary. How do we mix these ingredients
together? That is, what is the syntax of first-order languages? First of all, we define

4 Chapter 1. Semantic Construction

a first-order term τ to be any constant or any variable. Roughly speaking, terms are
the noun phrases of first-order languages: constants can be thought of as first-order
counterparts of proper names, and variables as first-order counterparts of pronouns.

Atomic Formulas

We can then combine our ‘noun phrases’ with our ‘predicates’ (meaning, the various
relation symbols in the vocabulary) to form what we call atomic formula s:

If R is a relation symbol of arity n , and τ1 	�������	 τn are terms, then R � τ1 	�������	 τn � is an
atomic formula.

Intuitively, an atomic formula is the first-order counterpart of a natural language sen-
tence consisting of a single clause (that is, a simple sentence). So what does a formula
like R � τ1 	�������	 τn � actually mean? As a rough translation, we could say that the enti-
ties that are named by the terms τ1 	�������	 τn stand in a relationship that is named by the
symbol R. An example will clarify this point:

LOVE � PETER 	 ANNA �
What’s meant by this formula is that the entity named PETER stands in the relation
denoted by LOVE to the entity named ANNA - or more simply, that Peter loves Anna.

Complex Formulas

Now that we know how to build atomic formulas, we can define more complex ones
as well. The following inductive definition tells us exactly what kinds of well-formed
formula s (or wffs, or simply formulas) we can form.

1. All atomic formulas are wffs.

2. If ϕ and ψ are wffs then so are � ϕ, � ϕ � ψ � , � ϕ � ψ � , and � ϕ � ψ � .
3. If ϕ is a wff, and x is a variable, then both � xϕ and

�
xϕ are wffs. (We call ϕ the

matrix or scope of such wffs.)

4. Nothing else is a wff.

Roughly speaking, formulas built using � , � , � and � correspond to the natural lan-
guage expressions ‘... and ...’, ‘if ... then ...’, ‘... or ...’, and ‘it is not the case that
...’, respectively. First-order formulas of the form � xϕ and

�
xϕ correspond to natural

language expressions of the form ‘some...’ or ‘all...’.

1.2.4 Bound and Free Variables

Free and Bound Variables

Let’s now turn to a rather important topic: the distinction between free variable s and
bound variable s.

Have a look at the following formula:

��� THERAPIST � x �
� � x � MORON � x ��� � yPERSON � y �����

1.2. First-Order Logic: Basic Concepts 5

The first occurrence of x is free, whereas the second and third occurrences of x are
bound, namely by the first occurrence of the quantifier

�
. The first and second oc-

currences of the variable y are also bound, namely by the second occurrence of the
quantifier

�
.

Informally, the concept of a bound variable can be explained as follows: Recall that
quantifications are generally of the form:

�
xϕ

or � xϕ

where x may be any variable. Generally, all occurences of this variable within the
quantification are bound. But we have to distinguish two cases. Look at the following
formula to see why:

� x � MAN � x ����� � xWALKS � x ����� HAPPY � x ���
1. x may occur within another, embedded, quantification

�
xψ or � xψ, such as the x

in WALKS � x � in our example. Then we say that it is bound by the quantifier of
this embedded quantification (and so on, if there’s another embedded quantifica-
tion over x within ψ).

2. Otherwise, we say that it is bound by the top-level quantifier (like all other oc-
curences of x in our example).

Here’s a full formal simultaneous definition of free and bound:

1. Any occurrence of any variable is free in any atomic formula.

2. No occurrence of any variable is bound in any atomic formula.

3. If an occurrence of any variable is free in ϕ or in ψ, then that same occurrence is
free in � ϕ, � ϕ � ψ � , � ϕ � ψ � , and � ϕ � ψ � .

4. If an occurrence of any variable is bound in ϕ or in ψ, then that same occurrence
is bound in � ϕ, � ϕ � ψ � , � ϕ � ψ � , � ϕ � ψ � . Moreover, that same occurrence is
bound in

�
yϕ and � yϕ as well, for any choice of variable y.

5. In any formula of the form
�

yϕ or � yϕ (where y can be any variable at all in this
case) the occurrence of y that immediately follows the initial quantifier symbol
is bound.

6. If an occurrence of a variable x is free in ϕ, then that same occurrence is free in�
yϕ and � yϕ, for any variable y distinct from x. On the other hand, all occur-

rences of x that are free in ϕ, are bound in
�

xϕ and in � xϕ.

If a formula contains no occurrences of free variables we call it a sentence .

6 Chapter 1. Semantic Construction

1.2.5 Notation

In what follows, we won’t always be adhering to the official first-order syntax defined
above. Instead, we’ll generally try and use as few brackets as possible, as this tends to
improve readability. For example, we would rather not write

Outer Brackets

� THERAPIST � JOHN ��� MORON � PETER ���
which is the official syntax. Instead, we are (almost invariably) going to drop the
outermost brackets and write

THERAPIST � JOHN ��� MORON � PETER �
Precedence

To help further reduce the bracket count, we assume the following precedence conven-
tions for the Boolean connectives: � takes precedence over � and � , both of which
take precedence over � . What this means, for example, is that the formula

�
x ����� THERAPIST � x ����� MORON � x ��� MORON � x ���

is shorthand for the following:

�
x ����� THERAPIST � x ��� MORON � x ����� MORON � x ���

In addition, we’ll use the square brackets] and [as well as the official round brackets,
as this can make the intended grouping of symbols easier to grasp visually.

1.2.6 Representing formulas in Prolog

We would like to use first order logic as a semantic representation formalism, and we
want to deal with it in Prolog. So the next thing we need is a way of writing down
formulas of first-order logic in Prolog. In short, we will simply use Prolog terms for
this purpose that resemble the formulas they stand for as closely as possible. This is
what we deal with in this section.

Atomic Formulas

First, we must decide how to represent constant symbols, predicate symbols, and vari-
ables. We do so in the easiest way possible: a first-order constant c will be represented
by the Prolog atom c, and a first-order predicate symbol P will be represented by the
Prolog atom p. Variables will also be represented by Prolog atoms. Note that this
choice of representation won’t allow our programs to distinguish constants from vari-
ables. So it’s our own responsibility to choose the atoms for constants distinct from
those for variables when we write down formulas in Prolog.

Given these conventions, it is obvious how atomic formulas should be represented. For
example, LOVE(JOHN,MARY) would be represented by the Prolog term love(john,mary),
and HATE � PETER 	 x � would be represented by hate(peter,x).

1.3. Building Meaning Representations 7

Complex Formulas

Next for Boolean combinations of simple formulas. The symbols

& v > ~

will be used to represent the connectives � , � , � , and � respectively.

The following Prolog code ensures that these connectives have their usual precedences:

:- op(900,yfx,>). % implication

:- op(850,yfx,v). % disjunction

:- op(800,yfx,&). % conjunction

:- op(750, fy,~). % negation

Have a look at Learn Prolog Now!1 if you are unsure about what this code means.

Here are some examples of complex first-order formulas represented in Prolog. To test
your understanding of the above operator definitions: How would the formulas look in
fully bracketed version?

� love(john, mary) & love(mary, john) > hate(peter,john)

� love(john, mary) & ~ love(mary, john) > hate(john.peter)

� ~ love(mary, john) v love(peter,mary) & love(john, mary) > hate(john.peter)

Quantifiers

Finally, we must decide how to represent quantifiers. Recall that the first order formula
MAN � x � has the Prolog-representation man(x). Now

�
x � MAN � x � will be represented as

forall(x,man(x))

and � x � MAN � x � will be represented as

exists(x,man(x))

1.3 Building Meaning Representations

Now that we’ve learned something about first-order logic and how to work with it in
Prolog, it is time to have a look at the major issue of this chapter, which is:

Given a sentence of English, how do we get to its meaning representation?

This question is of course far too general for what we can achieve in one chapter of
this course. So let’s rather ask a more specific one: ‘Is there a systematic way of
translating such simple sentences as ‘John loves Mary’ and ‘A woman walks’ into
first-order logic?’ The important point here is the demand of being systematic. Next,
we will discuss why this is so important.

1http://www.coli.uni-saarland.de/~kris/learn-prolog-
now/html/node82.html#sec.l9.operators

8 Chapter 1. Semantic Construction

1.3.1 Being Systematic

Is there a systematic way of translating such simple sentences as ‘John loves Mary’
and ‘A woman walks’ into first-order logic?

The key to answering this question is to be more precise about what we mean by
‘systematic’. When examining the sentence ‘John loves Mary’, we see that its semantic
content is (at least partially) captured by the first-order formula LOVE(JOHN,MARY) .
Now this formula consists of the symbols LOVE, JOHN and MARY. Thus, the most
basic observation we can make about systematicity is the following: the proper name
‘John’ contributes the constant symbol JOHN to the representation, the transitive verb
‘loves’ contributes the relation symbol LOVE, and the proper name ‘Mary’ contributes
the constant symbol MARY.

More generally, it’s the words of which a sentence consists that contribute the relation
symbols and constants in its semantic representation. But (important as it may be) this
observation doesn’t tell us everything we need to know about systematicity. It only
tells us where the building blocks of our meaning representations will come from -
namely from words in the lexicon.

But it doesn’t tell us how to combine these building blocks. For example we have to
form the first-order formula LOVE(JOHN,MARY) from the symbols LOVE, JOHN and
MARY. But from the same symbols we can also form LOVE(MARY,JOHN) . So why do
we choose to put MARY in the second argument slot of LOVE rather than in the first
one? Is there a principle behind this decision? For this task, we haven’t been specific
yet about what we mean by working in a systematic fashion.

1.3.2 Being Systematic (II)

Syntactic Structure...

Our missing link here is the notion of syntactic structure . As we know well from the
previous chapters, ‘John loves Mary’ isn’t just a string of words: it has a hierarchical
structure. In particular, ‘John loves Mary’ is an S (sentence) that is composed of the
subject NP (noun phrase) ‘John’ and the VP (verb phrase) ‘loves Mary’. This VP is
in turn composed of the TV (transitive verb) ‘loves’ and the direct object NP ‘Mary’.
Given this hierarchy, it is easy to tell a conclusive story about - and indeed, to draw a
convincing picture of - why we should get the representation LOVE(JOHN,MARY) as a
result, and nothing else:

See movie in HTML version.

John loves Mary (S)
LOVE(JOHN,MARY)

John (NP)
JOHN

loves Mary (VP)
LOVE(?,MARY)

loves (TV)
LOVE(?,?)

Mary (NP)
MARY

1.3. Building Meaning Representations 9

...and its use for Semantics

When we combine a TV with an NP to form a VP, we have to put the semantic rep-
resentation associated with the NP (in this case, MARY) in the second argument slot
of the VP’s semantic representation (in this case, LOVE(?,?)). Next, JOHN needs to be
inserted into the first argument slot. Why? Simply because this is the slot reserved for
the semantic representations of NPs that we combine with VPs to form an S.

In more general terms, given that we have some reasonable syntactic story about what
the pieces of our sentences are, and which pieces combine with which other pieces, we
can try to use this information to explain how the various semantic contributions have
to be combined.

Summing up we are now in a position to give quite a good explication of ‘systematic-
ity’: When we construct meaning representations systematically, we integrate infor-
mation from two different sources:

1. The lexical items (i.e. the words) in a sentence give us the basic ingredients for
our representation.

2. Syntactic structure tells us how the semantic contributions of the parts of a sen-
tence are to be joined together.

1.3.3 Three Tasks

Let us have a look at the general picture that’s emerging. How do we translate sim-
ple sentences such as ‘John loves Mary’ and ‘A woman walks’ into first-order logic?
Although we still don’t have a specific method at hand, we can formulate a plausible
strategy for finding one. We need to fulfill three tasks:

Task 1 Specify a reasonable syntax for the natural language fragment of interest.

Task 2 Specify semantic representations for the lexical items.

Task 3 Specify the translation of complex expressions (i.e. phrases and sentences) composi-
tionally. That is, we need to specify the translation of such expressions in terms of
the translation of their parts, parts here referring to the substructure given to us by the
syntax.

Of course all three tasks should be carried out in a way that naturally leads to computa-
tional implementation. Because this chapter is on semantic construction, tasks 2 and 3
are where our real interests lie, and most of our attention will be devoted to them. But
we also need a way of handling task 1.

1.3.4 From Syntax to Semantics

Task 1 �
In order to approach Task 1, we will use a simple context free grammar. As ususal,
the syntactic analysis of a sentence will be represented as a tree whose non-leaf nodes

10 Chapter 1. Semantic Construction

represent complex syntactic categories (such as S, NP and VP) and whose leaves repre-
sent lexical items (these are associated with lexical categories such as noun, transitive
verb, determiner, proper name and intransitive verb). To enhance the readability of
such trees, we will omit the non-branching steps and take for instance Mary (NP) as a
leave node.

Let’s have a second look at our semantically annotated syntax-tree for the sentence
‘John loves Mary’ (from Section 1.3.2).

John loves Mary (S)
LOVE(JOHN,MARY)

John (NP)
JOHN

loves Mary (VP)
LOVE(?,MARY)

loves (TV)
LOVE(?,?)

Mary (NP)
MARY

We said that the systematic contribution of syntactic structure to semantic construc-
tion consists in guiding the semantic contributions of words and phrases to the right
places in the final semantic representation. So far so good, but in constructing the for-
mula LOVE(JOHN,MARY) along the above syntax tree, we made tacit use of a lot of
knowledge about how exactly syntactic information should be used. Can we make this
knowledge more explicit?

Let’s take a step back. What’s the simplest way of taking over syntactic information
into our semantic representation? Surely, the following is a very undemanding first
step:

John loves Mary (S)
(JOHNNP@(LOVE(?,?)T V @MARYNP)VP)S

John (NP)
JOHNNP

loves Mary (VP)
(LOVE(?,?)T V @MARYNP)VP

loves (TV)
LOVE(?,?)T V

Mary (NP)
MARYNP

We’ve simply taken the semantic contributions of words and phrases, uniformly joined
them with an @-symbol, and encoded the tree structure in the bracketing structure
of the result. Yet the result is still quite far from what we actually want to have. It
definitely isn’t a first order formula. In fact we’ve only postponed the question of how
to exploit the syntactic structure for guiding arguments to their places. What we’ve
got is a nice linear ‘proto’-semantic representation, in which we still have all syntactic
information at hand. But this representation still needs a lot of post-processing.

1.4. The Lambda Calculus 11

What we could now try to do is start giving post-procesing rules for our ‘proto’-
semantic representation, rules like the following:‘If you find a transitive verb repre-
sentation between two @-symbols, always take the item to its left as first argument,
and the item to its right as second argument.’

Formulating such rules would soon become very complicated, and surely our use of
terms like ‘item to the left’ indicates that we’ve not yet reached the right level of ab-
straction in our formulation. In the next section, we’re going to look at λ-calculus, a
formalism that gives us full flexibility in speaking about missing pieces in formulas,
where they’re missing, and when and from where they should be supplied. It provides
the right level of generality for capturing the systematics behind the influence that syn-
tactic structure has on meaning construction. Post-processing rules like the one just
seen won’t be necessary, their role is taken over by the uniform and very simple oper-
ation of β-reduction.

1.4 The Lambda Calculus

Towards the end of the last section we saw how to transfer as much information as
possible about the syntactic structure of a sentence into a kind of proto-semantic rep-
resentation. But we still completely lack a uniform way of combining the collected
semantic material into well-formed first order formulas.

In this section we will dicuss a mechanism that fits perfectly for this task. It will allow
us to explicitly mark gaps in first-order formulas and give them names. This way we
can state precisely how to build a complete first order formula out of separate parts.
The mechanism we’re talking about is called λ-calculus. For present purposes we shall
view it as a notational extension of first order logic that allows us to bind variables
using a new variable binding operator λ. Here is a simple λ-expression:

λx �WOMAN � x �
The prefix λx � binds the occurrence of x in WOMAN � x � . That way it gives us a handle
on this variable, which we can use to state how and when other symbols should be
inserted for it.

1.4.1 Lambda-Abstraction

λ-expressions are formed out of ordinary first order formulas using the λ-operator.
We can prefix the λ-operator, followed by a variable, to any first order formula or λ-
expression. We call expressions with such prefixes λ-abstraction s (or, more simply,
abstractions). We say that the variable following a λ-operator is abstracted over . And
we say that the variable abstracted over is (λ-)bound by its respective λ-operator within
an abstraction, just as we say that a quantified variable is bound by its quantifier inside
a quantification.

Abstractions

The following two are examples of λ-abstractions:

1. λx � WOMAN � x �

12 Chapter 1. Semantic Construction

2. λu � λv � LOVE � u 	 v �
In the first example, we have abstracted over x. Thus the x in the argument slot of
WOMAN is bound by the λ in the prefix. In the second example, we have abstracted
twice: Once over v and once over u. So the u in the first argument slot of LOVE is
bound by the first λ, and the v is bound by the second one.

Missing Information

We will think of occurrences of variables bound by λ as placeholders for missing in-
formation: They serve us to mark explicitly where we should substitute the various bits
and pieces obtained in the course of semantic construction. Let us look at our first ex-
ample λ-expression again. Here the prefix λx � states that there is information missing
in the formula following it (a one-place predication), and it gives this ‘information gap’
the name x. The same way in our second example, the two prefixes λu � and λv� give
us separate handles on each of the two information gaps in the following two-place
predication.

1.4.2 Reducing Complex Expressions

So the use of λ-bound variables allows us to mark places where information is missing
in a partial first order formula. But how do we fill in the missing information when it
becomes available? The answer is simple: We substitute it for the λ-bound variable.
We can read a λ-prefix as a request to perform substitution for its bound variable.

Controlled substitution

In λx �WOMAN � x � , the binding of the free variable x in WOMAN(x) explicitly indicates
that WOMAN has an argument slot where we may perform substitutions.

We will use concatenation (marked by an @-symbol) to indicate when we have to
perform substitutions, and what to substitute. By concatentating a λ-expression with
another expression, we trigger the substitution of the latter for the λ-bound variable.
Consider the following expression (we use the special symbol @ to indicate concate-
nation):

λx �WOMAN � x � @MARY

Functional Application, β-Reduction

This compound expression consists of the abstraction λx � WOMAN � x � written immedi-
ately to the left of the expression MARY, both joined together by @. Such a concatena-
tion is called functional application ; the left-hand expression is called the functor, and
the right-hand expression the argument. The concatenation is an instruction to discard
the λx � prefix of the functor, and to replace every occurrence of x that was bound by this
prefix with the argument. We call this substitution process β-reduction (other common
names include β-conversion and λ-conversion). Performing the β-reduction demanded
in the previous example yields:

WOMAN(MARY)

1.4. The Lambda Calculus 13

The purpose of λ-bound variables is thus to mark the slots where we want substitutions
to be made, the purpose of λ-prefixes is to indicate at what point in the reduction pro-
cess substitutions should be made, and the arguments of applications provide the ma-
terial to be substituted. Abstraction, functional application, and β-reduction together
will drive our first really systematic semantic construction mechanism. Next, let’s see
how it works in practice.

1.4.3 Using Lambdas

Let’s return to the sentence ‘A woman walks’. According to our grammar, a deter-
miner and a common noun can combine to form a noun phrase. Our semantic analysis
couldn’t be simpler: we will associate the NP node with the functional application that
has the determiner representation as functor and the noun representation as argument.
Structurally, this is of course the same thing that we did in Section 1.3.4. Only this
time the semantic contributions of constituents are generally λ-expressions, and we
will simply read the @-symbols as application markers. In fact it will turn out that the
combination of functional application and β-reduction is a method of such generality
that we can even completely disregard the phrase-indices (such as NP and V P) that
were part of our ‘proto’-representations in Section 1.3.4.

Building a structured application...

a woman (NP)
λP� λQ ��� x � P@x � Q@x � @λy � WOMAN � y �

a (Det)
λP� λQ ��� x � P@x � Q@x � woman (Noun)

λy � WOMAN � y �
As you can see from the picture, we use the λ-expression λP� λQ ����� x � P@x � Q@x ��� as
our representation for the indefinite determiner ‘a’. We’ll take a closer look at this rep-
resentation soon, after we’ve looked at how it does its job in the semantic construction
process. But there’s one thing that we have to remark already now. While the λ-bound
variables in the examples we’ve seen so far were placeholders for missing constant
symbols, P and Q in our determiner-representation stand for missing predicates. The
version of λ-calculus introduced here does not distinguish variables that stand for dif-
ferent kinds of missing information. Nevertheless we will stick to a convention of
using lower case letters for variables that stand for missing constant symbols, and cap-
ital letters otherwise.

But now let’s carry on with the analysis of the sentence ‘A woman walks’. We have to
incorporate the intransitive verb ‘walks’. We assign it the representation λ � zWALK � z � .
The following tree shows the final representation we obtain for the complete sentence:

14 Chapter 1. Semantic Construction

a woman walks (S)� λP� λQ ��� x � P@x � Q@x � @λy �WOMAN � y ��� @ � λz �WALK � z ���

a woman (NP)
λP� λQ ��� x � P@x � Q@x � @λy � WOMAN � y � walks (VP)

λz �WALK � z �

a (Det)
λP� λQ ��� x � P@x � Q@x � woman (Noun)

λy �WOMAN � y �
The S node is associated with � λP� λQ ��� x � P@x � Q@x � @λy � WOMAN � y ��� @ � λz � WALK � z ��� .
We obtain this representation by a procedure analogous to that performed at the NP
node. We associate the S node with the application that has the NP representation just
obtained as functor, and the VP representation as argument.

...and reducing it.

Now instead of hand-tailoring lots of specially dedicated post-processing rules, we
will simply β-reduce the expression that we find at the S node as often as possible. We
must follow its (bracketed) structure when we perform β-reduction. So we start with
reducing the application λP� λQ ��� x � P@x � Q@x � @λy �WOMAN � y � . We have to replace
P by λy �WOMAN � y � , and drop the λP prefix. The whole representation then looks as
follows:

λQ ��� x � λy �WOMAN � y � @x � Q@x � @λz �WALK � z �
See movie in HTML version.

Let’s go on. This time we have two applications that can be reduced. We decide to get
rid of the λQ first. Replacing Q by λz � WALK � z � we get:

� x � λy �WOMAN � y � @x � λz �WALK � z � @x �
Again we have the choice where to go on β-reducing – this time it should be obvious
that our choice doesn’t make any difference for the final result (in fact it never does.
This property of λ-calculus is called confluence). Thus let’s β-reduce twice. We have
to replace both y and z by x. Doing so finally gives us the desired:

� x � WOMAN � x ��� WALKS � x ���
Determiner

Finally, let’s have a closer look at the determiner-representation we’ve been using.
Remember it was λP� λQ ��� x � P@x � Q@x � . Why did we choose this expression? In a
way, there isn’t really an answer to this question, except simply: Because it works.

But then let’s at least have a closer look at why it works. We know that a determiner
must contribute a quantifier and the pattern of the quantification. Intuitively, indefinite
determiners in natural language are used to indicate that there is something of a certain

1.4. The Lambda Calculus 15

kind (epressed in the so-called restriction of the determiner), about which one is going
to say that it also has some other property (expressed in the so-called scope of the
determiner). In the sentence ‘A woman walks’, the ‘a’ indicates that there is something
of a certain kind, namely ‘woman’, and that this something also has a certain property,
namely ‘walk’.

So for the case of an indefinite determiner, we know that the quantifier in its first-order
formalization has to be existential, and that the main connective within the quantifi-
cation is a conjunction symbol. This is the principle behind formalizing indefinite
determiners in first-order logic.

Now clever use of λ-bound variables in our determiner representation allows us to
leave unspecified all but just these two aspects. All that is already ‘filled in’ in the
representation λP� λQ ��� x � P@x � Q@x � is the quantifier and a little bit about the internal
structure of its scope, namely that the main connective is � . The rest is ‘left blank’,
and this is indicated using variables.

The second important thing about a λ-expression is the order of its prefixes. This is
where the role of syntactic structure comes in - and where explanation really doesn’t
go any further in the case of our determiner: We had to choose λP� λQ and not λQ � λP
for the simple reason that phrases and sentences containing determiners are built up
syntactically as they are. This holds with all generality: When deciding about the order
of λ-prefixes of a meaning representation, one has to think of the right generalizations
over the syntactic use of its natural language counterpart.

1.4.4 Advanced Topics: Proper Names and Transitive Verbs

As we’ve just learnt, the way we use λs in our meaning representations reflects gen-
eralizations over the syntactic use of their natural language counterparts. Let’s look
at the representation of proper names and transitive verbs as further examples of this
connection. We said before that the first-order counterparts of proper names are con-
stant symbols, and that for example JOHN stands for ‘John’. But while the semantic
representation of a quantifying NP such as ‘a woman’ can be used as a functor, surely
such a constant symbol will have to be used as an argument. Will this be a problem for
our semantic construction mechanism?

Proper names

In fact, there’s no problem at all - if we only look at things the right way. We want
to use proper names as functors, because syntactic structure suggests to treat them the
same way as quantified noun phrases. But then we just shouldn’t translate them as
constant symbols directly. Let’s keep their intended use in mind when we design the
semantic representations for proper names. It’s all a matter of abstracting cleverly.
Indeed the λ-calculus offers a delightfully simple functorial representation for proper
names, as the following examples show:

‘Mary’: λP� P@MARY

‘John’: λQ �Q@JOHN

16 Chapter 1. Semantic Construction

Role-Reversing

From outside (i.e. if we only look at the λ-prefix) these representations are exactly like
the ones for quantified noun phrases. And - most importantly - they can be used in the
same way: They are abstractions, thus they can be used as functors. However looking
at the inside, note what such functors do. As always, they are essentially instructions
to substitute their argument for the bound variable (i.e. P or Q). But this time, this
means that the argument becomes itself applied, namely to the constant symbol that
stnds for the bearer of the name! Because the λ-calculus offers us the means to specify
such role-reversing functors, proper names can be used as functors just like quantified
NPs.

Transitive verbs

As an example of these new representations in action, let us build a representation
for ‘John loves Mary’. But before we can do so, we have to meet another challenge:
‘loves’ is a transitive verb, it takes an object and forms a VP; we will want to apply it
to its object-NP. And the resulting VP should be usable just like a standard intransitive
verb; we want to be able to apply the subject NP to it. This is what we know in advance.

Given these requirements, a λ-expression like the simple λu � λv� LOVE � u 	 v � (which
we’ve seen in Section 1.4.1) surely won’t do. After all, the object NP combining
with a transitive verb is itself a functor. It would be inserted for u in this λ-expression,
but u isn’t applied to anything anywhere. So the result could never be β-reduced to a
well-formed first-order formula. How do we make our representation fit our needs this
time? Let’s try something like our role-reversing trick again; we’ll assign ‘loves’ the
following λ-expression:

λR � λz ��� R@λx � LOVE � z 	 x ���
An example

Thus prepared we’re now ready to have a look at the semantic construction for ‘John
loves Mary’. We can build the following tree:

See movie in HTML version.

John loves Mary (S)� λP� P@JOHN � @ � λX � λz ��� X@λx � LOVE � z 	 x ��� @ � λP� P@MARY ���

John (NP)
λP� P@JOHN

loves Mary (VP)
λX � λz ��� X@λx � LOVE � z 	 x ��� @ � λP� P@MARY �

loves (TV)
λX � λz ��� X@λx � LOVE � z 	 x ��� Mary (NP)

λP� P@MARY

How is this going to work? Let’s look at the application at the S-node, and think
through step by step what happens when we β-convert (page 12) it: Inside our com-
plex application, the representation for the object NP is substituted for X . It ends up

1.4. The Lambda Calculus 17

being applied to something looking like an intransitive verb (λx � LOVE � z 	 x �), namely
an ‘intransitive verb with a free variable’. This application is going to be no problem
- it’s structurally the same we would get if our object NP was the subject of a true
intransitive verb. So everything is fine here.

Now the remaining prefix λz makes the complete VP-representation also function like
that of an intransitive verb (from outside). And indeed the subject NP semantic repre-
sentation finally takes the VP semantic representation as argument, again as if it was
the representation of a true intransitive verb. So everything is fine here, too.

Trace the semantic construction!

Make sure you understand what is going on here by β-reducing the expression at the
S-node yourself!

1.4.5 The Moral

Our examples have shown that λ-calculus is ideal for semantic construction in two
respects:

1. The process of combining two representations was perfectly uniform. We sim-
ply said which of the representations is the functor and which the argument,
whereupon combination could be carried out by applying functor to argument
and β-converting. We didn’t have to make any complicated considerations here.

2. The load of semantic analysis was carried by the lexicon: We used the λ-calculus
to make missing information stipulations when we gave the meanings of the
words in our sentences. For this task, we had to think accurately. But we could
make our stipulations declaratively, without hacking them into the combination
process.

Our observations are indeed perfectly general. Doing semantic construction with the
help of λ-calculus, most of the work is done before the actual combination process.

What we have to do...

When giving a λ-abstraction for a lexical item, we have to make two kinds of decisions:

1. We have to locate gaps to be abstracted over in the partial formula for our lexical
item. In other words, we have to decide where to put the λ-bound variables inside
our abstraction. For example when giving the representation λP� P@MARY for
the proper name ‘Mary’ we decided to stipulate a missing functor. Thus we
applied a λ-abstracted variable to MARY.

2. We have to decide how to arrange the λ-prefixes. This is how we control in
which order the arguments have to be supplied so that they end up in the right
places after β-reduction when our abstraction is applied. For example we chose
the order λP� λQ when we gave the representation λP� λQ ��� x � P@x � Q@x � for
the indefinite determiner ‘a’. This means that we will first have to supply it with
the argument for the restriction of the determiner, and then with the one for the
scope.

18 Chapter 1. Semantic Construction

...and how

Of course we are not totally free in these decisions. What constrains us is that we want
to be able to combine the representations for the words in a sentence so that they can
be fully β-reduced to a well-formed first order formula. And not just some formula,
but the one that captures the meaning of the sentence.

So when we design a λ-abstraction for a lexical item, we have to anticipate its potential
use in semantic construction. We have to keep in mind which final semantic represen-
tations we want to build for sentences containing our lexical item, and how we want
to build them. In order to decide what to abstract over, we must think about which
pieces of semantic material will possibly be supplied from elsewhere during semantic
construction. And in order to arrange our λ-prefixes, we must think about when and
from where they will be supplied.

Summing up

The bottom line of all this is that devising lexical representations will be the tricky part
when we give the semantics for a fragment of natural language using λ-calculus. But
with some clever thinking, we can solve a lot of seemingly profound problems in a
very streamlined manner.

1.4.6 What’s next

What’s next?

For the remainder of this lecture, the following version of the three tasks listed earlier
(page 9) will be put into practise:

Task 1 Specify a DCG for the fragment of natural language of interest.

Task 2 Specify semantic representations for the lexical items with the help of the λ-calculus.

Task 3 Specify the translation R � of a syntactic item R whose parts are F and A with the
help of functional application. That is, specify which of the subparts is to be thought
of as functor (here it’s F), which as argument (here it’s A) and then define R � to be
F �@A � , where F � is the translation of F and A � is the translation of A . Finally, apply
β-conversion as a post-processing step.

1.4.7 [Sidetrack:] Accidental Bindings

But before we can put λ-calculus to use in an implementation, we still have to deal
with one rather technical point: Sometimes we have to pay a little bit of attention
which variable names we use. Suppose that the expression F in λV � F is a complex
expression containing many λ operators. Now, it could happen that when we apply
a functor λV � F to an argument A , some occurrence of a variable that is is free in A
becomes bound when we substitute it into F .

For example when we construct the semantic representation for the verb phrase ‘loves
a woman’, syntactic analysis of the phrase could lead to the representation:

λP� λy ��� P@λx � LOVE � y 	 x ��� @ � λQ � λR ����� y � Q@ � y ��� R@y ��� @λw�WOMAN � w ���

1.4. The Lambda Calculus 19

β-reducing three times yields:

λy ��� λR ����� y � WOMAN � y ��� R@y ��� @λx � LOVE � y 	 x ���
Notice that the variable y occurs λ-bound as well as existentially bound in this expres-
sion. In LOVE � y 	 x � it is bound by λy, while in WOMAN � y � and R it is bound by � y. So
far, this has not become a problem. But look what happens when we β-convert once
more:

λy ����� y � WOMAN � y ��� λx � LOVE � y 	 x � @y ���
LOVE � y 	 x � has been moved inside the scope of � y. In result, the occurrence of y has
been ’caught’ by the existential quantifier, and λy doesn’t bind any occurence of a
variable at all any more. Now we β-convert one last time and get:

λy ����� y � WOMAN � y ��� LOVE � y 	 y �����
We’ve got an empty λ-abstraction, made out of a formula that means something like
‘A woman loves herself’. That’s not what we want to have. Such accidental bindings
(as they are usually called) defeat the purpose of working with the λ-calculus. The
whole point of developing the λ- calculus was to gain control over the process of per-
forming substitutions. We don’t want to lose control by foolishly allowing unintended
interactions.

1.4.8 [Sidetrack:] Alpha-Conversion

But such interactions need never happen. Obviously, our problem occured simply be-
cause we used two variables named y in our representation. But λ-bound variables are
merely placeholders for substitution slots. The exact names of these placeholders do
not play a role for their function. So, relabeling bound variables yields λ-expressions
which lead to exactly the same substitutions in terms of ’slots in the formulas’ (much
like relabeling bound variables in quantified formulas doesn’t change their truth val-
ues).

Let us look at an example. The λ-expressions λx � MAN � x � , λy � MAN � y � , and λz � MAN � z �
are equivalent, as are the expressions λQ ��� x � WOMAN � x ��� Q@x � and λY ��� x � WOMAN � x ���
Y@x � . All these expressions are functors which when applied to an argument, re-
place the bound variable by the argument. No matter which argument A we choose,
the result of applying any of the first three expressions to A and then β-converting
is MAN � A � , and the result of applying either of the last two expressions to A is� x � WOMAN � x ��� A@x � .

α-Equivalence

Two λ-expressions are called α-equivalent if they only differ in the names of λ-bound
variables. In what follows we often treat α-equivalent expressions as if they were
identical. For example, we will sometimes say that the lexical entry for some word is a
λ-expression E , but when we actually work out some semantic construction, we might
use an α-equivalent expression E � instead of E itself.

20 Chapter 1. Semantic Construction

α-Conversion

The process of relabeling bound variables is called α-conversion . Since the result of α-
converting an expression performs the same task as the initial expression, α-conversion
is always permissible during semantic construction. But the reader needs to understand
that it’s not merely permissible to α-convert, it can be vital to do so if β-conversion is
to work as intended.

Returning to our intial problem, if we can’t use λV � F as a functor, any α-equivalent
formula will do instead. By suitably relabeling the bound variables in λV � F we can
always obtain an α-equivalent functor that doesn’t bind any of the variables that occur
free in A , and accidental binding is prevented.

So, strictly speaking, it is not merely functional application coupled with β-conversion
that drives our approach to semantic construction, but functional application and β-
conversion coupled with (often tacit) use of α-conversion. Notice we only didn’t en-
counter the problem of accidental binding earlier because we (tacitly) chose the names
for the variables in the lexical representations cleverly. This means that we have been
working with α-equivalent variants of lexical entries all along in our examples.

1.5 Implementing Lambda Calculus

Our decision to perform semantic construction with the aid of an abstract "glue" lan-
guage (namely, λ-calculus) has pleasant consequences for grammar writing, so we
would like to make the key combinatorial mechanisms (functional application and β-
conversion), available as black boxes to the grammar writer. From a grammar engi-
neering perspective, this is a sensible thing to do: when writing fragments we should
be free to concentrate on linguistic issues.

In this section we build the required black boxes. With such a black boxes available,
we will be able to use a small DCG for semantic construction. We will decorate it with
extremely natural semantic construction code and start building representations.

1.5.1 Representations

First, we have to decide how to represent λ-expressions in Prolog. As in the case of
representing first-order formulas, we will use Prolog terms that resemble the expres-
sions they represent as closely as possible. For abstractions, something as simple as
the following will do:

lambda(x,F)

Secondly, we have to decide how to represent application. Let’s simply transplant our
@-notation to Prolog by defining @ as an infix operator:

:- op(950,yfx,@). % application

That is, we shall introduce a new Prolog operator @ to explicitly mark where functional
application is to take place: the notation F@A will mean ‘apply function F to argument
A’. We will build up our representations using these explicit markings, and then carry
out β-conversion when all the required information is to hand.

1.5. Implementing Lambda Calculus 21

1.5.2 Extending the DCG

Let’s see how to use this notation in DCGs. We’ll use a small DCG with e.g. an intran-
sitive verb and a proper name as well as the necessary rules to use them in sentences.
To use the resulting DCG for semantic construction, we have to specify the seman-
tic representation for each phrasal and lexical item. We do this by giving additional
arguments to the phrase markers of the DCG.

The resulting grammar is found in See file semanticDCG.pl.. Let’s have a look at
the phrasal rules first:

s(NP@VP) --> np(NP),vp(VP).

np(DET@N) --> det(DET),n(N).

np(PN) --> pn(PN).

vp(TV@NP) --> tv(TV),np(NP).

vp(IV) --> iv(IV).

The unary phrasal rules just percolate up their semantic representation (here coded
as Prolog variables NP, VP and so on), while the binary phrasal rules use @ to build
a semantic representation out of their component representations. This is completely
transparent: we simply apply function to argument to get the desired result.

1.5.3 The Lexicon

The real work is done at the lexical level. Nevertheless, the lexical entries for nouns
and intransitive verbs practically write themselves:

n(lambda(X, witch(X))) --> [witch], {vars2atoms(X)}.

n(lambda(X, wizard(X))) --> [wizard], {vars2atoms(X)}.

n(lambda(X, broomstick(X))) --> [broomstick], {vars2atoms(X)}.

n(lambda(X, man(X))) --> [man], {vars2atoms(X)}.

n(lambda(X, woman(X))) --> [woman], {vars2atoms(X)}.

iv(lambda(X, fly(X))) --> [flies], {vars2atoms(X)}.

If you do not remember the somewhat difficult representation of transitive verbs, look
at Section 1.4.4 again. Here’s the lexical rule for our only transitive verb form, ‘curses’:

tv(lambda(X, lambda(Y, X@lambda(Z, curse(Y,Z))))) --> [curses], {vars2atoms(X), vars2atoms(Y), vars2atoms(Z)}.

tv(lambda(X, lambda(Y, X@lambda(Z, love(Y,Z))))) --> [loves], {vars2atoms(X), vars2atoms(Y), vars2atoms(Z)}.

Recall that the λ-expressions for the determiners ‘every’ and ‘a’ are λP� λQ � � x ��� P@x �
Q@x � and λP� λQ ��� x ��� P@x � Q@x � . We express these in Prolog as follows:

det(lambda(P, lambda(Q, exists(X, ((P@X) & (Q@X)))))) --> [a], {vars2atoms(P), vars2atoms(Q),vars2atoms(X)}.

det(lambda(P, lambda(Q, forall(X, ((P@X) > (Q@X)))))) --> [every], {vars2atoms(P), vars2atoms(Q),vars2atoms(X)}.

Finally, the ‘role-reversing’ (Section 1.4.4) representation for our only proper name:

pn(lambda(P, P@harry)) --> [harry], {vars2atoms(P)}.

pn(lambda(P, P@john)) --> [john], {vars2atoms(P)}.

pn(lambda(P, P@mary)) --> [mary], {vars2atoms(P)}.

22 Chapter 1. Semantic Construction

Prolog Variables?

Note that we break our convention (page 6) of representing variables by constants in
these lexical rules. All the λ-bound variables are written as Prolog variables instead of
atoms. This is the reason why we have to add the calls to vars2atoms/1 in some of
our phrasal rules (included in curly brackets - curly brackets allow us to include further
Prolog calls with DCG-rules). Whenever a lexical entry is retrieved, vars2atoms/1
replaces all Prolog variables in it by new atoms. Distinct variables are replaced by
distinct atoms. We won’t go into how exactly this happens - if you’re interested, have a
look at the code of the predicate. After this call, the retrieved lexical entry is in accord
with our representational conventions again.

This sounds complicated - so why do we do it? If you have read the sidetracks in the
previous section (Section 1.4.7 and Section 1.4.8), you’ve heard about the possibility
of accidental binding and the need for α-conversion during the semantic construction
process. Now by using Prolog variables in lexical entries and replacing them by atoms
on retrieval, we make sure that no two meaning representations taken from the lex-
icon ever contain the same λ-bound variables. In addition, the atoms substituted by
vars2atoms/1 are distinct from the ones that we use for quantified variables. Finally,
no other rules in our grammar ever introduce any variables or double any semantic
material. In result accidental bindings just cannot happen. So using Prolog variables
in the lexicon may be a bit of a hack, but that way we get away without implementing
α-conversion.

1.5.4 A First Run

Semantic construction during parsing is now extremely easy. Here is an example query:

?- s(Sem,[harry,flies],[]).

Sem = Sem=lambda(v1, v1@harry)@lambda(v2, fly(v2))

Or generate the semantics for ‘Harry curses a witch.’: s(Sem,[harry,curses,a,witch],[]).

The variables v1,v2 etc. in the output come from the calls to vars2atoms during
lexical retrieval. The predicate generates variable names by concatenating the letter v
to a new number each time it is called.

So now we can construct λ-terms for natural language sentences. But of course we
need to do more work after parsing, for we certainly want to reduce these complicated
λ-expressions into readable first-order formulas by carrying out β-conversion. For this
purpose we will now implement the predicate betaConvert/2.

1.5.5 Beta-Conversion

The first argument of betaConvert/2 is the expression to be reduced and the second
argument will be the result after reduction. Let’s look at the two clauses of the predicate
in detail. You find them in the file See file betaConversion.pl..

betaConvert(Functor@Arg,Result):-

betaConvert(Functor,lambda(X,Formula)),

1.5. Implementing Lambda Calculus 23

!,

substitute(Arg,X,Formula,BetaConverted),

betaConvert(BetaConverted,Result).

The first clause of betaConvert/2 is for the cases where ‘real’ β-conversion is done,
i.e. where a λ is thrown away and all occurences of the respective variable are replaced
by the given argument. In such cases

1. The input expression must be of the form Functor@Arg,

2. The functor must be (recursively!) reducible to the form lambda(X,Formula)

(and is indeed reduced to that form before going on).

If these three conditions are met, the required substitution is made and the result can
be further β-converted recursively.

This clause of betaConvert/2 makes use of a predicate substitute/4 (originally
implemented by Sterling and Shapiro) that we won’t look at in any more detail. It is
called like this:

substitute(Substitute,For,In, Result).

Substitute is substituted for For in In. The result is returned in Result.

1.5.6 Beta-Conversion Continued

Second, there is a clause of betaConvert/2 that deals with those expressions that do
not match the first clause. Note that the first clause contains a cut. So, the second
clause will deal with all and only those expressions whose functor is not (reducible
to) a λ-abstraction. The only well-formed expressions of that kind are formulas like
walk(john) & (lambda(X,talk(X))@john) and atomic formulas with arguments
that are possibly still reducible. Apart from that, this clause also applies to predicate
symbols, constants and variables (remember that they are all represented as Prolog
atoms). It simply returns them unchanged.

betaConvert(Formula,Result):-

compose(Formula,Functor,Formulas),

betaConvertList(Formulas,ResultFormulas),

compose(Result,Functor,ResultFormulas).

The clause breaks down Formula using the predicate compose/3. This predicate de-
composes complex Prolog terms into the functor and a list of its arguments (thus in our
case, either the subformulas of a complex formula or the arguments of a predication).
For atoms (thus in particular for our representations of predicate symbols, constants
and variables), the atom is returned as Functor and the list of arguments is empty.

If the input is not an atom, the arguments or subformulas on the list are recursively
reduced themselves. This is done with the help of:

24 Chapter 1. Semantic Construction

betaConvertList([],[]).

betaConvertList([Formula|Others],[Result|ResultOthers]):-

betaConvert(Formula,Result),

betaConvertList(Others,ResultOthers).

After that, the functor and the reduced arguments/subformulas are put together again
using compose/3 the other way round. Finally, the fully reduced formula is returned
as Result.

If the input is an atom, the calls to betaConvertList/2 and compose/3 trivially suc-
ceed and the atom is returned as Result.

Here is an example query with β-conversion:

?- s(Sem,[harry,flies],[]), betaConvert(Sem,Reduced).

Sem = lambda(A,A@mary)@lambda(B,walk(B)), Reduced = fly(harry)

Try it for ‘Harry curses a witch.’: s(Sem,[harry,curses,a,witch],[]), betaConvert(Sem,Res).

?- Question!

Above, we said that complex formulas like fly(harry) & (lambda(x,fly(x))@harry)

are split up into their subformulas (which are then in turn β-converted) by the last
clause of betaConvert/2. Explain how this is achieved at the example of this partic-
ular formula!

1.5.7 Running the Program

We’ve already seen a first run of our semantically annotated DCG, and we’ve now im-
plemented a module for β-conversion. So let’s plug them together in a driver predicate
go/0 to get our first real semantic construction system:

go :-

readLine(Sentence),

resetVars,

s(Formula,Sentence,[]),

nl, print(Formula),

betaConvert(Formula,Converted),

nl, print(Converted).

This predicate first converts the keyboard input into a list of Prolog atoms. Next, it
does some cleaning up that is needed to manage the creation of variable names during
lexicon retrieval (see Section 1.5.3). Then it uses the semantically annotated DCG
from See file semanticDCG.pl. and tries to parse a sentence.

Next, it prints the unreduced λ-expression produced by the DCG. Finally, the λ-expression
is β-converted by our predicate betaConvert/2 and the resulting formula is printed
out, too.

In order to run the program, consult runningLambda.pl at a Prolog prompt:

1.5. Implementing Lambda Calculus 25

1 ?- [runningLambda].

% comsemOperators compiled into comsemLib 0.00 sec, 520 bytes

% comsemLib compiled into comsemLib 0.01 sec, 7,612 bytes

% comsemOperators compiled into betaConversion 0.00 sec, 216 bytes

% betaConversion compiled into betaConversion 0.00 sec, 1,604 bytes

% comsemOperators compiled into runningLambda 0.00 sec, 216 bytes

% semanticDCG compiled into runningLambda 0.01 sec, 4,336 bytes

% comsemOperators compiled 0.00 sec, 136 bytes

% runningLambda compiled into runningLambda 0.02 sec, 14,848 bytes

Yes

2 ?- go.

> harry flies.

lambda(v1, v1@harry)@lambda(v2, fly(v2))

fly(harry)

Yes

Code For This Chapter

Here’s a listing of the files needed:

See file semanticDCG.pl. The semantically annotated DCG.
See file runningLambda.pl. The driver predicate.
See file betaConversion.pl. β-conversion.
See file comsemOperators.pl. Definitions of operators used in semantic representations
See file comsemLib.pl. Auxiliary predicates.

Further Reading

The approach we discussed here is a simplified implementation of Richard Montague’s
ideas (see [11]).

26 Chapter 1. Semantic Construction

2

Towards a Modular Architecture

In this chapter, we will re-package our grammar and lexicon such that we arrive at
a modular framework of semantics construction. Later on, we will be experimenting
with a semantic construction techniques differing from λ-calculus. Incorporating these
changes, and keeping track of what is going on, requires a disciplined approach towards
grammar design. So we will take the opportunity and get to know some basic principles
of software engineering on the way. That is, we will re-structure our program such that
it is:

Modular: Each component should have a clear role to play and a clean interface with the other
components.

Extensible: The grammar should be easy to upgrade, should the need arise.

Reusable: We should be able to reuse a significant portion of the grammar, even when we change
the underlying representation language.

Sticking to these simple principles, we will build an overall framework that will serve
us unchanged throughout the rest of this course.

2.1 Architecture of our Grammar

This section gives an overview of the general architecture we’ve adopted for our flexi-
ble and modular implementation of a semantics construction system.

We have adopted a fairly simple grammar architecture that has four (2x2) parts: a
lexicon, DCG-rules, semantic macros, and (semantic) combination rules. Before we
go through each of these components in detail, we will give an overview over what
exactly their tasks are.

The figure below shows how our system analyses the sentence ‘John walks’:

28 Chapter 2. Towards a Modular Architecture

Static throughout the course Different for different approaches (e.g. λ-calculus here)

DCG �

!
" � � # "
"
! � � $�#

lexicon

combine � %�
&(' � λ " � " �*)
+-,�./� @λ 0/� 1/2�354��607���

.�8
&(' � λ " � " �*)�+5,�./��� � � 9 8
&(' � λ 0/� 1/2�354��607���
8�.
&(' � λ " � " �*)�+5,�./��� � � :59;
&(' � λ 0/� 1/2�354��607���

semantic Macros

John walks

Syntax...

Look at the left-hand side of the figure. This side shows the syntactic parts of the
grammar. The syntactic analysis consists of two steps: First, a lexicon look-up tells us
that ‘John’ is a proper name (

"
!
) and that ‘walks’ is an intrantitive verb ($(#). Second,

the two non-branching DCG-Rules
!�" � "�!

and # " � $�# tell us that ‘John’ is also
a noun phrase (

!�"
) and that ‘walks’ is also a verb phrase (# "). Finally, the DCG-rule � !�" # " tells us that ‘John walks’ in fact is a sentence. A grammar that’s as simple

as that on the side of syntax will do for our purposes.

...and Semantics.

Now look at the right-hand side of the figure. Here, you see the semantic parts of
the grammar. The semantic macros for proper names (pnSem(...)) and for intran-
sitive verbs (ivSem(...)) provide us with the semantic representations of the lexi-
cal items, in this case: λP� P � JOHN � and λx � WALK � x � . Then, two so-called combine-
rules (there is one for each DCG-rule) tell us how to obtain the semantic representa-
tions npSem(...) and vpSem(...) out of the semantic representations pnSem(...)

and ivSem(...), respectively. Finally, there is a combine-rule that tells us how to
combine these semantic representations to end up with the semantic representation
of the sentence. At present, we’re using functional application for this task and get:
λP� P � JOHN � @λx �WALK � x � .
Finally a postprocessing step is neccessary in order to get WALK � JOHN � , namely doing
β-reduction.

The division of our grammar into syntactic and semantic parts will make life easier for
us as semanticists, because once we have specified the lexical entries for the words
belonging to the syntactic categories of interest, and once we have formulated the
DCG-rules that license buliding all complex phrases we want to deal with, we need
not bother with syntax any more. Instead, we can concentrate on the semantic macros
that give meaning to the lexical entries, and we can design the combine rules so that
they adequately compute the meaning of larger phrases out of the meaning of their
parts.

2.2. The Syntax Rules 29

2.2 The Syntax Rules

In this section we turn to the core DCG rules that we are going to use in our semantics
construction system.

DCG

But we first have to deal with syntax. So we now turn to the core DCG rules that we
are going to use. Let’s look at our diagram (page 27): We’re in the blue part in the
upper half of the left (blue) side. So what we’re talking about now will remain fixed
throughout the rest of the course. This basically means that for what’s to come later,
we will consider the problem of syntax as solved.

We will first discuss what syntax rules we would like to use. We will immediately see
why we can’t - and then solve the problem.

2.2.1 Ideal Syntax Rules

DCG

Here are some DCG rules that license a number of semantically important construc-
tions: Proper names, determiners, pronouns, relative clauses, the copula construction,
and coordination. In addition, the first two rules allow us to form discourses by string-
ing together sentences.

The DCG we would like to use

s--> [if], s, [then], s.

s--> np, vp.

np--> np, coord, np.

np--> det, noun.

np--> pn.

np--> whnp.

np--> whdet, noun.

noun--> noun, coord, noun.

noun--> noun.

noun--> adj, noun.

noun--> noun, pp.

noun--> noun, rc.

noun--> noun, coord, noun.

vp--> vp, coord, vp.

vp--> v(fin).

vp--> v(fin).

vp--> mod, v(inf).

v(I)--> v(I), coord, v(I).

v(I)--> tv(I), np.

30 Chapter 2. Towards a Modular Architecture

v(I)--> iv(I).

v(fin)--> cop, np.

v(fin)--> cop, neg, np.

pp--> prep, np.

rc--> relpro, vp.

However these are not quite the rules we’re actually going to use, for the following
reason: The coordination rules are left-recursive, hence the standard Prolog DCG in-
terpreter will loop when given this grammar. As we do want to give coordination
examples while not implementing any parser that deals with left-recursive rules, we’re
going to adopt adopt an easy fix for this problem.

2.2.2 The Syntax Rules we will use

DCG

Luckily, there’s a simple trick that will make a limited form of coordination available
to us. We’ll add an auxiliary set of categories named np2, np1, v2, v1, etc. These aux-
iliary categories allow us to specify left-recursive rules to a certain depth of recursion.
For example, the rules which have something to say about NPs will be replaced by the
following:

A DCG allowing only limited recursion.

np2--> np1.

np2--> np1, coord, np1.

np1--> det, noun2.

np1--> pn.

Similarly, the rules controlling nouns will become:

noun2--> noun1.

noun2--> noun1, coord, noun1.

noun1--> noun.

noun1--> noun, pp.

noun1--> noun, rc.

While this is a rather blunt way of dealing with the problem of left recursion in a
grammar, it enables us to parse the examples we want without having to implement a
more sophisticated parser.

Another shortcoming of these rules should be mentioned. As you might have noticed
by now, we’ve imposed limits on inflectional morphology—all our examples are relent-
lessly third-person present-tense. This is a shame, since tense and its interaction with
temporal reference is a particularly rich source of semantic examples. Nonetheless, we
shall not be short of interesting things to do.

2.3. The Semantic Side 31

See file englishGrammar.pl.

But for all its shortcomings, this small set of rules (to be found in englishGrammar.pl)
assigns tree structures to an interesting range of English sentences:

‘Mary loves every owner of a siamese cat.’

‘John or Mary smokes.’

‘Every man that loves a woman visits a therapist.’

‘John does not love a therapist or woman that smokes.’

‘If a therapist talks then a man works.’

2.3 The Semantic Side

Now we’re going to look at the semantic construction copmonent of our new imple-
mentation. As we’ve stated, we plan to use our framework with different semantic
formalisms. So the semantic construction part we’re going to implement can’t stay
fixed throughout the course. Rather, we’ll explicitely want to change it from time to
time. And of course we want to be able to do so with as few complications as possible.
We’ll add a call to an interface predicate (named combine/3) to each of our syntax
rules. And when we want to upgrade to a different method of semantic construction,
we’ll often be able to do so by simply re-implementing combine/3.

combine

Now we’re going to look at the upper right (the reddish) side of our diagram (page 27):
Semantic construction. As we’ve stated above, we plan to use our framework with dif-
ferent semantic formalisms. So the semantic construction part we’re going to imple-
ment can’t stay fixed throughout the course. Rather, we’ll explicitely want to change it
from time to time. And of course we want to be able to do so with as few complications
as possible.

Let’s recall an observation we made some time ago: Any systematic method of seman-
tic construction has to use the information provided by syntactic structure. So one thing
is for sure: As different as they may be, any of the formalisms for semantic construc-
tion we possibly come to use will have to communicate with our syntax component.
We’ll incorporate this insight into our framework as follows: We’ll add a call to an in-
terface predicate (named combine/3) to each of our syntax rules. And when we want
to upgrade to a different method of semantic construction, we’ll often be able to do so
by simply re-implementing combine/3.

2.3.1 The Semantically Annotated Syntax Rules

Here we go providing the clean interface between syntax and semantics construction
that we’ve just promised. Recall that so far, we’ve simply been using concatenation
(indicated by the @-operator) to combine semantic representations while parsing a sen-
tence, then β-converting the result in a subsequent post-processing step.

In our examples before, concatenation using the @-operator was encoded directly in the
DCG. For instance, the s-rule looked like this:

s(NP@VP) --> np(NP),vp(VP).

32 Chapter 2. Towards a Modular Architecture

Each DCG rule is paralleled by a combine-rule.

In view of our grammar engineering principles, this is not a good practice. The crucial
keywords here are modularity and reusability. We shouldn’t code one particular mode
of semantic construction in the syntactic rules. Instead, we will encapsulate the partic-
ular method in use into a generic predicate combine/2. Each DCG rule will include
a call to this predicate (to call a predicate with a DCG rule, we have to put it in curly
brackets. The predicate is then called whenever the respective rule is applied). The
following examples show what our DCG rules now look like:

DCG combine

s1(S1)--> np2(NP2), vp2(VP2), {combine(s1:S1,[np2:NP2,vp2:VP2])}.

np1(NP1)--> det(Det), noun2(N2), {combine(np1:NP1,[det:Det,n2:N2])}.

np1(NP1)--> pn(PN), {combine(np1:NP1,[pn:PN])}.

The first argument of combine/2 is always the semantic representation passed on to the
superordinate phrase. Now let’s look at the way we specify the second argument. We
use a little Prolog trick here: In order to uniformly have a binary combine/2, no matter
how many daughters the syntax rule at hand licenses, we make the second argument
of combine/2 a list. On this list, we put the semantic representations of the daughters,
each one tagged with its syntactic category. So there’s one item on this list if we are in
a unary syntax rule, and two if we are in a binary one.

As a result of our encapsulation strategy, changing the mode of semantic construction
is now solely a matter of changing the implementation of combine/2, whereas the
DCG itself will always remain as shown above. Additionally, we will often need to
provide some postprocessing capabilities. These may of course also have to be imple-
mented differently for different semantic construction methods. But given our modular
architecture, they can simply be plugged in and out behind the modules we’re looking
at right now (we will see below (page 37) how all of this is done at the example of
β-reduction).

See file englishGrammar.pl.

The complete set of annotated DCG rules we will use in this course can be found in
englishGrammar.pl.

2.3.2 Implementing combine/2 for Functional Application

combine

Using the predicate combine/2, we have factored the task of combining semantic rep-
resentations out of the syntax rules. As a case study, we will implement the combina-
tion technique we’ve got used to by now: Functional application. So the first task is
simply building the obvious ‘apply the function to the argument statements’ expressed
with the help of @. We do this in the clauses for the combine/2-predicate. Take a look
at the s-rule of our grammar:

2.4. Looking Up the Lexicon 33

See file englishGrammar.pl.

s1(S1)--> np2(NP2), vp2(VP2), {combine(s1:S1,[np2:NP2,vp2:VP2])}.

Look at the call to combine/2 in the curly brackets. The first argument contains the
semantics of the sentence (tagged s1), the second argument contains a list with the
semantics of the NP and the VP (tagged np1 and vp1 respectively).

The purpose of the tags contained within these arguments is to select an appropriate
clause of the predicate combine/2. We define the combine/2 predicate for lambda
calculus in lambda.pl. So let us start by looking at the first clause of combine/2
that goes with the syntax rule given above. It unifies S with NP@VP. This looks as
follows:

combine(s1:(NP@VP),[np2:NP,vp2:VP]).

The clause of combine/2 that goes with the np rule

np1(NP1)--> det(Det), noun2(N2), {combine(np1:NP1,[det:Det,n2:N2])}.

is similarily straightforward:

combine(np1:(DET@N),[det:DET,n2:N]).

The unary rules, of course, are even simpler, for they merely pass the input representa-
tion up to the mother node. For example:

combine(np2:X,[np1:X]).

goes with

np2(NP2)--> np1(NP1), {combine(np2:NP2,[np1:NP1])}.

For all combine rules see See file lambda.pl.

Note again the advantage of using a list of tagged semantic representations as the sec-
ond argument (i.e. the input) of combine/2: We’ve been able to uniformly give clauses
for one and the same (binary) predicate for combining the two input representations in
the binary s and np-rules, as well as for passing on the single input representation in
the unary np-rule. Guided by matching the tags and lengths of the input lists, Prolog
will always select the right clause for us automatically.

2.4 Looking Up the Lexicon

lexicon Semantic Macros

Up to now, we’ve been focussing on the upper half of our diagram (page 27), the part
where words (and meanings) are combined. Let’s now focus on the lower half, where
words and meanings come from: Let’s look at the lexicon. In a lexical lookup, the
syntax component needs to find the syntactic category for a given input token, while
the semantic component has to be provided with the associated meaning representation.
Our strategy will again be to factor out as much as possible of the semantic side, as this
side is what will change with different formalisms.

34 Chapter 2. Towards a Modular Architecture

2.4.1 Lexical Rules

lexicon

The combinatorial part of our grammar is connected to the lexicon via the so-called
lexical rules. These are the grammar rules that apply to terminal symbols, the actual
strings in the input of the parser. They need to call the lexicon to check if a string
belongs to the syntactic category searched for, and retrieve its semantic representation.

noun(N)--> {lexicon(noun,Sym,Word,_),nounSem(Sym,N)}, Word.

Semantic Macros

The code that goes with each lexical DCG rule consists of two calls: One to a lexicon/4
predicate, and one to a binary so-called semantic macro (nounSem/2 in the example).
The lexicon/4-call does the actual lexical lookup: If it finds Phrase (a list of atoms
coming from the input sentence. Most of the time this list will of course contain only
one item.) in the category given as first argument, it returns a core semantic represen-
tation in Sym. As we shall see below (page 34), such a core representation is nothing
else than a predicate or constant symbol (hence the variable name Sym). This symbol
is then further processed by the semantic macro. In our example, the semantic macro
nounSem/2 is used to construct the actual semantic representation for a noun.

Each lexical category is associated with one semantic macro. Using such macros,
we can set up the lexicon as well as the lexical rules totally independent from the
semantic theory. Note that we’re now simply re-doing on the lexical level what we did
when we introduced the combine/2-calls to our combinatorial rules: We’re factoring
out the specific types of structure required by various semantic formalisms into a (set
of) interface predicates. This way, we encapsulate this structure and separate it from
all other, more or less static information. To change the semantic formalism we will
simply re-implement our interface predicates (i.e. the semantic macros) - and that’s it.

See file englishGrammar.pl.

The lexical DCG rules can be found at the bottom of englishGrammar.pl.

2.4.2 The Lexicon

lexicon

Our lexicon declaratively lists information about the words belonging to most syntactic
categories in a very basic form. Technically, it consists of a lot of lexicon/4-facts.
Thus the general format of a lexical entry is:

lexicon(Cat,Sem,Phrase,Misc).

Here Cat is the syntactic category, Sem the core semantic information introduced by the
phrase (normally a relation symbol or a constant), Phrase the string of words that span
the phrase, and Misc miscellaneous information depending on the type of entry. In
particular, Misc may list gender information for nouns, proper names and inflectional
information for verbs, etc.

Typical entries for intransitive verbs are:

2.4. Looking Up the Lexicon 35

lexicon(pro,nonhuman,[it],[]).

lexicon(pro,male,[him],[]).

lexicon(iv,purr,[purr],inf).

lexicon(iv,smoke,[smokes],fin).

Nouns are listed in the following format:

lexicon(noun,woman,[woman],[]).

lexicon(noun,siamesecat,[siamese,cat],[]).

See file englishLexicon.pl.

A complete list of our lexical rules can be found in the file englishLexicon.pl.
All these rules will work for us unchanged throughout the course.

2.4.3 ‘Special’ Words

lexicon Semantic Macros

There are two classes of words that get a special treatment in our framework:

1. First, look at the following lexicon/4 facts for determiners:

lexicon(det,_,[every],uni).

lexicon(det,_,[a],indef).

Note that these entries contain no semantic information whatsoever. This is be-
cause the semantic contribution of determiners is not simply a constant or pred-
icate symbol, but rather a relatively complex expression that is expressed dif-
ferently in different formalisms. Hence we shall specify the semantics of these
categories in the semantic macros alone.

2. Secondly, a small number of important words - in particular, copula and the verb
phrase modifier construct ‘does not’ - are not listed in the lexicon at all. This is
because they are not associated with either a relation symbol or a constant, and
there’s no additional information we would like to list for them. For such words,
a lexicon/4 fact would simply list the word form as Phrase entry. Instead, we
will check their word form directly in our lexical rules (or as one also says: we
treat them syncategorematically). For example, the following rule handles verb
phrase negation:

neg(Neg)--> [not], {modSem(neg,Neg)}.

Thus in these cases the semantic macros will be the sole source of semantic
information.

36 Chapter 2. Towards a Modular Architecture

2.4.4 Semantic Macros for Lambda-Calculus

Semantic Macros

We saw in the last chapter (page 1) that using functional application and β-conversion
more or less reduces the process of combining semantic representations to an elegant
triviality, while it shifts most of the semantic load to the lexical component. We’ve
got the framework for constructing functional applications and for calling the lexicon.
But the only semantic information that our lexicon/4-facts supply are the relevant
constant and relation symbols. So where do the λs come from? The semantic macros
are where the real work will be done. Basically, they will specify the templates for the
abstraction patterns associated with different lexical categories. Let’s now implement
the semantic macros needed for λ-calculus. Here are some examples:

Nouns and proper names

nounSem(Sym,lambda(X,Formula)):-

compose(Formula,Sym,[X]).

The first macro, nounSem/2, builds a semantic representation for a noun given its pred-
icate symbol Sym, by turning this symbol into a formula λ-abstracted with respect to
a single variable. For example, given the predicate symbol man, it will return the λ-
abstraction lambda(X,man(X)). The scope of the abstraction is built using compose/3

to incorporate the given predicate symbol into a well-formed open formula. The se-
mantic macro for proper names (pnSem/2) is still simpler: It constructs the kind of
λ-expression discussed above (page 15) and doesn’t even need to call compose/3 for
this purpose.

Verbs

Let’s have a look at the macros for verbs next. The one for intransitive verbs is very
straightforward:

ivSem(Sym,lambda(X,Formula)):-

compose(Formula,Sym,[X]).

On a closer look, the macro does exactly the same as nounSem/2. This is not surprising
at all - after all the λ-expressions we saw (page 13) for intransitive verbs are also exactly
like the ones for nouns.

Finding the right abstraction pattern for transitive verbs turned out (page 16) to be a
little more involved. Nevertheless now we’ve got it, even this pattern translates into a
semantic macro without a glimpse:

tvSem(Sym,lambda(K,lambda(Y,K @ lambda(X,Formula)))):-

compose(Formula,Sym,[Y,X]).

This macro is again similar to that for nouns, except that it handles two variables rather
than just one. Additionally, it resembles the macro for proper names in the way it
incorporates our well known role-reversing trick.

2.5. Lambda at Work 37

Special words

As we’ve already mentioned, our grammar also deals with some ‘special’ words, words
that do not have a value for a predicate or constant symbol specified in the lexicon. De-
terminers are such words - and here are the macros for the indefinite and the universal
one. They’re basically just the old-style ‘lexical entries’ we used in Chapter 1:

detSem(uni,lambda(P,lambda(Q,forall(X,(P@X)>(Q@X))))).

detSem(indef,lambda(P,lambda(Q,exists(X,(P@X)&(Q@X))))).

These macros are self-contained in that they provide a complete semantic representa-
tion starting from no input. The first argument is only a tag that helps Prolog select the
right clause. It does not occur in the output representation.

All semantic macros can be found in See file lambda.pl.

For a complete listing of the macros we have been discussing, see the file lambda.pl.
We shall introduce another semantic construction method in the next chapter - no prob-
lem for our new architecture. From now on, we will always use the lexicon and the
rules listed above. The primary locus of change will be the semantic macros and the
implementation of combine/2.

2.5 Lambda at Work

Beta-Reduce Afterwards

By now, we have seen all ingredients of our core system in detail, and we’ve provided
almost all of the neccessary plug-ins for λ-based semantic construction. Almost all:
Because remember that we still need to post-process the semantic representations our
grammar produces, meaning we have to β-reduce them. Luckily, we already have the
predicate betaConvert/2 from the last chapter at our avail for this purpose.

Plugging Together

What’s next? Let’s plug it all together and provide a user-interface! The predicate
lambda/0 will be our driver predicate:

lambda :-

readLine(Sentence),

parse(Sentence,Formula),

betaConvert(Formula,Converted),

resetVars,vars2atoms(Formula),

printRepresentations([Converted]).

parse(Sentence,Formula):-

s2(Formula,Sentence,[]).

38 Chapter 2. Towards a Modular Architecture

First, readLine(Sentence) reads in the input. Next, parse(Sentence,Formula)
tests whether this input is accepted by our grammar as a sentence (the predicate simply
calls our DCG to parse a phrase of category s2). If the input is a sentence, the λ-
expression representing its meaning is returned in Formula. For example, for the input
‘Tweety smokes.’, we get the output lambda(A, A@tweety)@lambda(B, smoke(B)).
This expression is then β-converted, and finally all remaining Prolog variables in it are
replaced by atoms.

Check it out!

Our driver predicate lambda/0 is contained in the module lambda, which is the main
module for λ-calculus. Below, we give a listing of all modules that are used by lambda.
But before that, here is an example call for the sentence ‘A therapist loves a siamese
cat’:

lambda([a,therapist,loves,a,siamese,cat],Sem),write(Sem).

All modules used by lambda.pl

See file lambda.pl. The driver predicate; definition of the combine-rules and the lexical macros for λ-calculus.
See file comsemOperators.pl. Operator definitions.
See file englishGrammar.pl. The DCG-rules and the lexicon (using module englishLexicon). From here, the combine-rules and lexical macros defined by lambda are called.
See file englishLexicon.pl. The lexical entries for a small fragment of English.
See file betaConversion.pl. β-conversion.
See file comsemLib.pl. Auxiliaries.
See file signature.pl. Generating new variables
See file readLine.pl. Reading the input from stdin.

Further Reading

A textbook introduction of the analysis of language and meaning by methods of formal
logic is [8].

3

Scope and Underspecification

In the previous lecture, we have seen how we can compute semantic representations
for simple sentences. The formal tool we have used for this purpose was λ-calculus,
and the linguistic theory we have followed was Montague Semantics.

Now of course Montague Semantics does not cover all semantic phenomena there are;
otherwise semanticists would be out of jobs by now. The good news, however, is that
the insights into the structure of semantic representations that Montague gained are
so fundamental that many modern semantic theories still uphold Montague Semantics
when dealing with simple sentences. Such theories typically come with extensions to
the formal framework to allow them the necessary flexibility.

In this lecture, we will investigate the classical case in which Montague Semantics
fails to compute the correct meaning(s): scope ambiguities, a certain kind of semantic
ambiguity. In the first part, we talk about what scope ambiguities are and why the
mechanisms we know so far aren’t powerful enough to compute them. In the second
part of the lecture we learn about a rather modern approach to dealing with scope,
based on underspecification with dominance constraints [5]. Finally, we look at the
computational problems connected to this approach and show how to solve them - first
in an abstract way and then (in the next Chapter) by means of a Prolog implementation.

3.1 Scope Ambiguities

In this part of the lecture we will learn what scope ambiguities are and why such
ambiguities constitute a problem for Montague style semantic construction. We will
then see some ways of dealing with these problems (more or less satisfactorily) by
extending Montague’s framework a little.

3.1.1 What Are Scope Ambiguities?

What are scope ambiguities?

A scope ambiguity is an ambiguity that occurs when two quantifiers or similar expres-
sions can take scope over each other in different ways in the meaning of a sentence.
Here are some examples.

1. ‘Every man loves a woman.’

40 Chapter 3. Scope and Underspecification

2. ‘Every student did not pass the exam.’

Let’s look at the first sentence to see the ambiguity. The more prominent meaning
of this sentence is that for every man, there is a woman, and it’s possible that each
man loves a different woman. But the sentence also has a second possible meaning,
which says that there is one particular woman who is loved by every man. This reading
becomes clearer if we continue the example by "..., namely Brigitte Bardot."

To further underline the difference, have a look at the two readings represented in first-
order logic.

1.
�

x � MAN � x ���<��� y � WOMAN � y �
� LOVE � x 	 y ���
2. � y � WOMAN � y �
��� � x � MAN � x �=� LOVE � x 	 y ���

They are genuinely semantic...

We see that the sentence has two different meanings: it is ambiguous. Moreover, there
is no good reason to assume that the ambiguity should be syntactic. So we can say that
scope ambiguities are genuine semantic ambiguities. It is important to observe here
that both readings are made up of the same material (the semantic representations of
the quantified NPs ‘every man’ and ‘a woman’, and the nuclear scope ‘love’). The
only difference is the way in which the material is put together. We will come back to
this later.

...and omnipresent!

The second example shows that not only quantifiers can give rise to scope ambiguities
(if you find this particular sentence a little odd, you can play the same game with the
German ‘Jeder Student hat nicht bestanden.’). In this sentence, it is the relative scope
of the quantifier and the negation that is ambiguous. The two readings mean that either
every single student failed, or, respectively, that not everyone of the students passed.
In formulae:

1.
�

x � STUDENT � x ���>� PASS � x �
2. � � x ��� STUDENT � x ��� PASS � x ���

3.1.2 Scope Ambiguities and Montague Semantics

Using our Implementation

Now let’s see what Montague Semantics has to say about sentences containing scope
ambiguities like ‘Every man loves a woman’. We have just seen that this sentence has
two readings, but our implemented system only gets one of them:

?- lambda.

> every man loves a woman.

1 forall(A,man(A)>exists(B,woman(B)& love(A,B)))

yes

3.1. Scope Ambiguities 41

If you like to, reproduce this result at your computer:

lambda([every,man,loves,a,woman],Sem).

This is a correct representation of one of the possible meanings of the sentence - namely
the one where the quantifier of the object-NP occurs inside the scope of the quantifier
of the subject-NP. We say that the quantifier of the object-NP has narrow scope while
the quantifier of the subject-NP has wide scope. But the other reading is not generated
here! This means our algorithm doesn’t represent the linguistic reality correctly.

What’s the problem?

This is because our approach so far constructs the semantics deterministically from the
syntactic analysis. Our implementation simply isn’t yet able to compute two different
meanings for a syntactically unambiguous sentence. The reason why we only get the
reading with wide scope for the subject is because in the semantic construction process,
the verb semantics is first combined with the object semantics, then with that of the
subject. And given the order of the λ-prefixes in our semantic representations, this
eventually transports the object semantics inside the subject’s scope.

A Closer Look

To understand why our algorithm produces the reading it does (and not the other alter-
native), let us have a look at the order of applications in the semantic representation as
it is before we start β-reducing. To be able to see the order of applications more clearly,
we abbreviate the representations for the determiners. E.g. we write Every instead of
λPλQ

�
x � P � x �?� Q � x ��� . We will of course have to expand those abbreviations at some

point when we want to perform β-reduction.

��@
A5B5CED @λ A7� MAN �FAG��� @ ��� λ H λ I7H @ � λ D7� LOVE ��I�	6DG����� @ �6J @λ KL�WOMAN �FKM�����
After β-reducing the VP once, things look a little nicer:

i. ��@
A�B5CED @λ A�� MAN �FA���� @ � λ I;�6J @λ KL�WOMAN �FKM��� @ � λ D7� LOVE ��I�	6DG�����
The resulting expression is an application. The universal quantifier occurs in the func-
tor (the translation of the subject NP), and the existential quantifier occurs in the argu-
ment (corresponding to the VP). The scope relations in the β-reduced result reflect the
structure in this application.

An Idea for a Solution

With some imagination we can already guess what an algorithm would have to do
in order to produce the second reading we’ve seen above (where the subject-NP has
narrow scope): It would somehow have to move the J @λ D WOMAN �FDG� part in front of
the @GA5B5CED . Something like the following expression would do:

ii. �6J @λ KL� WOMAN �FKM��� @ � λ D�����@
A�B5CND @λ A7� MAN �FAG��� @ � λI7� LOVE ��I�	6DG�����

42 Chapter 3. Scope and Underspecification

3.1.3 A More Complex Example

So by sticking to the principles of classical Montague grammar, our implementation
can only construct one reading per sentence. You may think: But hey, at least we get
half of what we want. If this is what you think, the following example should convince
you that things are really worse:

‘Every owner of a siamese cat loves a therapist.’

We have a scope ambiguity between three quantifiers in the example sentence. Below
are four possible readings that are pretty easy to get for most speakers of English, and
a fifth one which we will examine a little closer soon:

1.
�

x ��� OWNER � x ���L� y � SIAMESECAT � y ��� OF � y 	 x ���;�O� z � THERAPIST � z �(� LOVE � x 	 z �
��@GA5B5CED @λI7��� OWNER ��I����P���6J @ Q _ RTS(U�� @λ D7� OF �FD7	VI�������� @ � λ I;�6J @ UXW(B5CFS
Y�Z Q�U�� @λ [5� LOVE ��I�	�[\���

2. � y � SIAMESECAT � y �(�P� � x ��� OWNER � x ��� OF � y 	 x ���;�O� z � THERAPIST � z �(� LOVE � x 	 z ���
�6J @ Q _ RTS(U�� @ � λ D7��]E��@
A�B5CED @λ I���] OWNER ��IG�(� OF �FD7	VI��_^V� @λ [5��]E�6J @ U�W�B5CFS
Y�Z Q�U�� @λ [LOVE ��I7	�[\�_^E^V�

3. � z � THERAPIST � z �(� � x ��� OWNER � x ���`� y � SIAMESECAT � y �(� OF � y 	 x ���;� LOVE � x 	 z �
�6J @ UXW(B5CVSGYGZ Q�U�� @λ [5��]E��@
A�B5CND @λI���] OWNER ��I����a�6J @ Q _ RTS(U�� @λ D7�cb�dT�FD7	VI��_^V� @λ I�� LOVE ��I7	�[\�_^

4. � y ��� SIAMESECAT � y �(�L� z � THERAPIST � z ��� � x ����� OWNER � x ��� OF � y 	 x ���;� LOVE � x 	 z �����
�6J @ Q _ RTS(U�� λ D���]E�6J @ UXW(B5CFS
YGZ Q�U�� @λ [5��]E��@
A�B5CND @λ I���] OWNER ��IG�(� OF �FD7	VI��_^V� @λ I�� LOVE ��I�	�[\�_^E^

5. � z � THERAPIST � z �(�L� y � SIAMESECAT � y ��� � x ����� OWNER � x �(� OF � y 	 x ���;� LOVE � x 	 z ���
�6J @ UXW(B5CVSGYGZ Q�U�� @λ [5��]E�6J @ Q _ RTS(U�� λ D7��]E��@
A�B5CED @λ I���] OWNER ��IG�(� OF �FD7	VI��_^V� @λ I�� LOVE ��I�	�[\�_^E^

We have also given an equivalent expression for each of the readings that uses abbre-
viations for the determiners, and additionally abbreviates some of the less complex
λ-expressions (if you like to, see for yourself by expanding and β-reducing). This
should give you an intuition of how the differences in meaning between the readings
actually go back to different ways of ordering the determiners.

So far only the first reading can be produced by our implementation. Again the order
of the quantifiers in this reading quite directly reflects the relations between the corre-
sponding NPs in the syntax tree. For instance ‘a therapist’ is a constituent of the VP
‘loves a therapist’. Thus its quantifier is in the scope of the universal quantifier of the
subject NP. The same goes for the existential quantifier of ‘a siamese cat’, because the
phrase is a constituent of the subject NP.

3.1. Scope Ambiguities 43

3.1.4 The Fifth Reading

Two readings may be equivalent...

If you have already looked closely at all the readings we have listed for the complex
example, you will have noticed that the fourth and fifth readings are logically equiva-
lent.

...but not necessarily

The reason why we have listed readings four and five separately in spite of this is that
there are structurally identical examples (which just use other determiners) in which
the two readings do mean different things. Consider the sentence ‘Every researcher of
a company saw most samples.’ Because of the determiner "most", the readings of this
sentence can’t be represented in first-order logic, but we can use efb5Q�U as the analogue
of @
A�B5CND and J in the λ terms. We are then able to write the semantic representations
of the fourth (1.) and fifth (2.) reading of the previous example as follows:

1. � A@company � λx ��]E� Most@sample � @λy ��]E� Every@λz ��] RESEARCHER � z �(� OF � z 	 x �_^V� @λz � SEE � z 	 y �_^
2. � Most@sample � @λy ��]E� A@company � λx ��]E� Every@λz ��] RESEARCHER � z �(� OF � z 	 x �_^V� @λz � SEE � z 	 y �_^

3.1.5 Montague’s Approach to the Scope Problem

Of course, linguists soon became well aware of the fact that Montague Grammar had
to do something about scope. Montague himself extended his formalism with an oper-
ation called quantifying in to remedy the problem.

Basically, his idea was to postulate two alternative syntactic analyses of sentences like
‘Every man loves a woman’:

1. The sentence is taken to consist of the NP ‘Every man’ and the VP ‘loves a
woman’. This is the analysis we’re used to. We already know that this analy-
sis gives us the formula

�
x ��� MAN � x �g�h��� y � WOMAN � y �i� LOVE � x 	 y ����� , where

‘Every man’ has scope over ‘a woman’.

2. Alternatively, the sentence is analysed in a way that may be paraphrased as ‘A
woman - every man loves her.’. (Of course ‘her’ in this paraphrase refers to the
woman introduced by the NP ‘a woman’). For semantic construction, this means
that the representation for the whole sentence is built by applying the translation
of ‘a woman’ to the translation of ‘every man loves her’. This analysis yields the
reading where ‘a woman’ outscopes ‘every man’.

To make the second analysis work, one has to think of a representation for the pronoun,
and one must provide for linking the pronoun to its antecedent ‘a woman’ later in the
semantic construction process. Intuitively, the pronoun itself is semantically empty.
Now Montague’s idea essentially was to choose a new variable to represent the pro-
noun. Additionally, he had to secure that this variable ends up in the right place after
β-reduction.

44 Chapter 3. Scope and Underspecification

3.1.6 Quantifying In: An Example

Let’s look at our example from before (page 43): Suppose we chose the variable v1
for the pronoun ‘her’. But we want to be able to use this pronoun like a quantified NP
that would usually stand in the same place. Eventually, it should end up in the second
argument slot of WOMAN. So we will wrap it in a λ-expression as follows: λP� P � v1 � .
This should ring a bell - we did the same thing for proper names, for example when
translating ‘John’ as λP� P � JOHN � .

Introduce a pleaceholder...

In effect, the sentence ‘Every man loves her’ yields the representation

� λPλQ
�

x ��� P � x ��� Q � x ��� @λy � MAN � y ��� @ � λRλxR@λy � LOVE � x 	 y � @λP� P � v1 ���
which can be β-reduced to:

�
x � MAN � x ��� LOVE � x 	 v1 ���

So what remains to be done? We still have to process the antecedent for our pro-
noun, namely the phrase ‘a woman’, translated as λQ � y ��� WOMAN � y �/� Q � y ��� . And
of course, our pronoun variable should be connected to this antecedent: We eventu-
ally want the second argument position of LOVE � x 	 v1 � to be bound by the existential
‘woman-quantifier’. This is achieved by λ-abstracting over the pronoun variable v1 and
then applying the translation of ‘a woman’ to the resulting abstraction:

...and eliminate it again.

λQ � y ��� WOMAN � y ��� Q � y ��� @ � λv1 � � x � MAN � x ��� LOVE � x 	 v1 �����
This reduces to:

� y ��� WOMAN � y ��� � x � MAN � x ��� LOVE � x 	 y �����
We’ve finally got the reading where ‘a woman’ has scope over ‘every man’. The basic
trick was to find a way to delay processing the NP ‘a woman’ until we have processed
‘every man’, thus lifting the existential quantifier above the universal. Implementing
this trick of course required quite a piece of sophisticated λ-programming.

3.1.7 Other Traditional Solutions

So we have managed to construct the second reading for our sentence. At a price,
though: in order to solve a semantic problem, we had to postulate an alternative syn-
tactic analysis for no obvious syntactic reason - and a rather unintuitive and strange one
at that; one that employs a pronoun that doesn’t surface in the sentence itself. The fun-
damental problem that each syntactic analysis still can have only one possible meaning
remains.

3.1. Scope Ambiguities 45

A more Elegant Solution

In 1975, Robin Cooper proposed a much more elegant mechanism to solve this prob-
lem. It became known as Cooper Storage . This mechanism took up Montagues idea of
lifting quantifiers by using ‘placeholders’ (like pronoun variables) as arguments instead
of quantified NPs, and accessing these placeholders later at different points during the
semantic construction process. Cooper started with a syntax tree whose leaves had
been annotated with the λ-terms representing the semantics of the words. Then he
performed bottom-up semantic composition as we have seen it above, but whenever
he had to combine an NP and a verb or VP, he could not only immediately apply the
NP semantics to the verb semantics, but alternatively use a placeholder and put the NP
semantics into a quantifier store . This way, he could potentially collect a lot of quan-
tifiers whose application he wanted to delay on his way up in the tree. Whenever he
hit a sentence node, his algorithm could pick some or all of the quantifiers and apply
them to the current semantics, in any order, thus generating all possible permutations
of quantifiers.

A Pseudo-reading

Cooper’s algorithm was a big step forward, but it suffered from an overgeneration prob-
lem. For example, it generated a sixth reading for the three-quantifier sentence we’ve
seen above. The problem with Cooper’s approach was that it liberally assumed that
you can obtain readings by simply permuting the quantifiers, and that each formula
obtained that way would represent a possible reading as well. In this respect it did not
differ too much from Montague’s technique of quantifying in. However, this assump-
tion is not true. Look at the following formula. It is another permutation of the three
quantifiers in our siamese-cat-example, but it is not a possible reading.

j � x � OWNER � x �
� OF � y 	 x ���f� y � SIAMESECAT � y ���>� z � THERAPIST � z ��� LOVE � x 	 z �
Advanced Solutions

In 1988, Keller managed to fix this overgeneration problem in a modified Cooper Stor-
age mechanism called Nested Cooper Storage (or simply Keller Storage , see [10]).
By the mid-Eighties, algorithms like this one or Hobbs and Shieber’s (1987) scoping
algorithm allowed to enumerate the readings of a scope ambiguity reasonably well.

3.1.8 The Problem with the Traditional Approaches

By the time most linguists were satisfied with having algorithms that computed the
readings of a scope ambiguity in a reasonably elegant way, the more computationally
minded researchers started to become a bit unhappy. Their problem was that they
tried to build practical language-processing systems, and it turned out that ambiguities
(including, but not limited to scope) were a major efficiency problem.

Combinatorial Explosion

The problem is one of combinatorial explosion . We’ve already seen above that a
scopally ambiguous sentence with two quantifiers has two readings, and one with three
quantifiers has five readings. The number of readings for similar sentences increases
as follows:

46 Chapter 3. Scope and Underspecification

number of quantifiers readings
4 14
5 42
6 132
7 429
8 1430

As you can see, the number of readings grows exponentially with the number of quan-
tifiers in the sentence. Now imagine that you wanted to do something interesting with
the possible meanings of your sentence - for example, feed them to a theorem prover
for inferences, as we will learn to do later in this course. Such operations are expensive
even on a single reading, but they become completely unfeasible for 1430 readings.
This is particularly annoying because the vast majority of these readings may be the-
oretically possible, and thus must be predicted by the theory. Still most readings will
not be intended by the speaker in the particular situation. Thus an NLP system spends
a lot of time on expensive computations, most of which are probably irrelevant.

The problem is serious.

At this point, you might argue that sentences that contain so many quantifiers are very
rare, but in the words of Jerry Hobbs, ‘Many people feel that most sentences exhibit too
few quantifier scope ambiguities for much effort to be devoted to this problem, but a
casual inspection of several sentences from any text should convince almost everyone
otherwise.’ Besides, you should bear in mind that not only NPs, but also negation,
some verbs (e.g. ‘believe’) and adverbs (‘possibly, sometimes, always’) take scope,
the basic combinatoric principles applying to these as well. Finally, scope is of course
only one source of ambiguity, and the numbers of readings for each type of ambiguity
multiply. The bottom line is that ambiguity in general is one of the big challenges for
efficient natural-language processing today; scope ambiguities are just one of many
culprits in this respect.

3.2 Underspecification

In the rest of this lecture, we will explore algorithms that do not enumerate all readings
from a syntactic analysis, but instead derive just one, underspecified description of
them all. It will still be possible to efficiently extract all readings from the description,
but we want to delay this enumeration step for as long as possible. At the same time,
the description itself will be very compact (not much bigger than one single reading),
and we will be able to compute a description from a syntactic analysis efficiently.

3.2.1 Introduction

A Clean and Declarative Approach

So basically, we are going to separate semantic construction from the enumeration
of readings of ambiguities. We thus divide the problem into two independent parts,
which we can in turn solve independently. This means we can stick to our original
setup, where we derive one representation from one syntactic analysis, only now this
representation is the description of a whole set of readings. It also means we can

3.2. Underspecification 47

take a more declarative perspective on scope ambiguity: First of all, we specify what
readings a sentence should have, and in a second step we can think about how to
actually compute them. We call this step of enumerating the single readings solving.
Our algorithm for this task will turn out to be quite an elegant one, constituting a great
step forward from traditional Cooper or Hobbs style algorithms, which not only had to
think about the structure of the semantics, but also about syntactic considerations.

Let us now sum up our discussion so far, using a few pictures. Then we illustrate
how our new underspecification based approach relates to the Montague style semantic
construction system from the last chapters, and to its extensions that we discussed in
the first part of this chapter.

Here’s a schema of how we get from a sentence to its semantic representation in the
standard case that our Montague style system covers: Unambiguous sentences like
‘John loves Mary’.

Standard Montague

NL Sentence Sem. RepresentationSyntactic Analysis

We’ve discussed a much more detailed version of this picture in the last chapter- the
semantic representation of the sentence is constructed via and along with its syntactic
analysis. One syntactic analysis can only yield one semantic representation. Now since
we’ve assumed that our input sentence is unambiguous, that’s fine. There is in fact only
one semantic representation for it.

But as we have seen in the first sections of this chapter, there are sentences that con-
tain genuinely semantic ambiguities. The paradigmatic case we’ve looked at is that of
quantifier scope ambiguities as in ‘Every man loves a woman’. The following graphic
depicts the situation when we feed that sentence to our Montague style semantic con-
struction system:

The Problem

NL Sentence Sem. Representation 1

Sem. Representation 2

Syntactic Analysis

???

There are two semantic representations that should be associated with our input sen-
tence, due to the scope ambiguity in it. But our system can only construct one of them.
That’s because there’s only one syntactic analysis for the sentence, and as we’ve just
mentioned, one syntactic analysis can only yield one semantic representation.

So if we don’t want to change anything substantial in the approach we’ve implemented,
there seems to be only one way to get to the second reading. That is to allow a second
syntactic analysis.

Montague with Quantifying In

NL Sentence Sem. Representation 1

Sem. Representation 2

Syntactic Analysis 1

Syntactic Analysis 2

48 Chapter 3. Scope and Underspecification

Now we would be able to construct the second semantic representation together with
this second syntactic analysis. As we’ve said (in Section 3.1.5), this is the solution
that Montague himself adopted. But we’ve also discussed that there’s one strong and
obvious argument against this solution: Scope ambiguities simply are not syntactic.
According to our intuitions, our example sentence is syntactically unambiguous, and
so we should not for purely technical reasons claim the opposite.

Underspecification allows for a more satifactory solution to our problem:

Underspecification

Sem. Rep. 1

NL Sentence
Underspec.
Rep.

Sem. Rep. 2

Syntactic
Analysis

Solve

Solve

We have split the ‘semantic side’ of our picture in two levels. On one level we have
underspecified descriptions, and on the other one the semantic representations we’re
used to (i.e. λ-expressions and - at the end of the day - first order formulae). With
this two-leveled architecture we can again construct one underspecified description
along with only one syntactic analysis. But this one underspecified description some-
times describes many readings on the level of λ-expressions. This means that we have
now captured the semantic ambiguity in truly semantic terms. Our first-level semantic
representation (the underspecified description) remains ambiguous between multiple
second-level semantic representations (λ-expressions) in the same way as the original
sentence.

Terminology

Before we go on, let us sort out our terminology a bit. Up to now, we’ve used the term
‘semantic construction’ to denote the whole business of getting from natural language
sentences to first order formulas. From now on, we will often have to differentiate a bit
more. We will then use ‘semantic construction’ in a more narrow sense, only for the
way from natural language sentences to underspecified descriptions. We will call the
step from underspecified descriptions to λ-expressions solving.

As regards the term ‘semantic representation’, we’ll sometimes use it as an umbrella
term for underspecified descriptions as well as λ-expressions and first order formulas.
But whenever it is important, we will carefully distinguish between the three.

3.2.2 Computational Advantages

Outlook

From a computational perspective the central hope connected with underspecification
is that we will be able to overcome the problems arising out of the combinatorial ex-
plosion. We don’t have the time here to go into it, but people have shown how to lift
β-reduction and even some first-order deduction to underspecified descriptions. More
than anything, however, underspecification may be an ideal platform when it comes

3.2. Underspecification 49

to incorporating external information that excludes irrelevant readings. We have seen
above that the theoretically possible number of readings of a sentence may be much
higher than the number of readings that are actually possible in a given context. Peo-
ple have preferences for certain readings (e.g. going back to the word order), or they
may judge some readings implausible. Underspecification may make it possible to ex-
clude impossible or dispreferred readings without ever seeing them. But this is ongoing
research and beyond the scope of this introduction.

3.2.3 Underspecified Descriptions

The first thing we need to do now is to render the notion of underspecified description
more precise. To see how we can describe all readings of an ambiguous sentence, let’s
go back to our favourite example, ‘Every man loves a woman.’ We’ve said that the two
readings of the sentence are these:

1.
�

x � MAN � x ���<��� y � WOMAN � y �
� LOVES � x 	 y ���
2. � y �woman � y ����� � x �man � x �k� LOVE � x 	 y ���

Assessing the material...

Now the important observation is that both readings consist of the same material: the
representations of the two quantified NPs and the nuclear scope. The difference is in
the way that these three fragments are put together. Both quantifiers must have scope
over LOVE � x 	 y � , but they can still have scope over each other in either way.

...and describing its combinations.

If you have a closer look at what we’ve just said, you’ll notice that this is a descrip-
tion of the two possible readings - in an informal way, of course. Underspecification
formalisms are all about making such descriptions more formal: They specify what
material the readings of a sentence consist of (in our example, the three formula frag-
ments), and what structural constraints one must obey when configuring them into
complete formulas. What is left underspecified is which of these readings is the "right"
reading of a specific utterance of the sentence.

3.2.4 The Masterplan

In the rest of this chapter and in the next one, we will go into the details of underspec-
ification. What exactly are we going to do? We will first give you an intuition of what
the formalism to be presented does, and then make this intuition more formal. Here’s
how we will proceed:

1. In order to give underspecified descriptions of possible readings, the first thing
we need is a way of talking about the structure of formulas and of λ-expressions.
We will represent formulas and λ-expressions as trees. So to begin with (Sec-
tion 3.2.5), we’ll explain how to do this.

50 Chapter 3. Scope and Underspecification

2. Then (in Section 3.2.6) we will introduce a formalism that allows us to describe
trees (and thereby formulas and λ-expressions). We will use the language of nor-
mal dominance constraints for our formalism, in the form of constraint graphs.
As a concrete example, we will look at the two λ-expressions (written as trees!)
for our running example ‘Every man loves a woman’ (Section 3.2.7) and see
how we can represent them using only one underspecified description from our
new formalism. We will learn how we can construct this description from the
two λ-expressions.

3. Once we know how an underspecified description describes (one or more) tree
representations of λ-expressions, we turn to the question that’s most important
when we build semantic representations for a sentence: How do we solve un-
derspecified descriptions? That is, given an underspecified description, how can
we compute the formulae it describes? This involves a process called constraint
solving . In the rest of this chapter we will give you a first intuition of what the
problem is that we have to deal with (Section 3.2.8). In the next chapter, we will
then continue our discussion by formulating an algorithm that incorporates this
intuition. Section 4.1 introduces the basic concepts used in that algorithm. In
Section 4.2 we consider one by one each of its subtasks.

Below you see again the general picture of underspecification-based semantic con-
struction that you know from Section 3.2.1. But this time we’ve marked in blue what
we will have dealt with when we’re through with the three points just mentioned. Addi-
tionally we’ve filled in the boxes with the types of representation we’re actually going
to use:

λ-Struct. 1
(tree rep.)

Formula 1

NL Sentence Dominance
Constraint

λ-Struct. 2
(tree rep.)

Formula 2

Syntactic
Analysis

Solve

Solve

Now you probably wonder: Isn’t there something missing? What about the grey part of
the picture above? We plan to discuss at length how underspecified descriptions relate
to formulas, and even give an algorithm that constructs the latter from the former. But
we seem to keep secret how to get from natural language sentences to underspecified
descriptions...

You are right with this observation! At that stage we will not yet know how to con-
struct e.g the one underspecified description of the two readings of ‘Every man loves a
woman’ from this sentence. And of course we have to know how to do this. Yet we will
not bother about this task until the very end of the next chapter (Section 4.4), when we
actually implement semantic construction based on our underspecification formalism.

The reason for this postponement is that the actual construction of underspecified de-
scriptions from sentences is by far the easiest step in our new semantic construction
system. It’s less complicated than the subsequent step of constraint solving, and it’s
even less complicated than the direct construction of λ-expressions that we’re used to
from our Montague based approach.

3.2. Underspecification 51

3.2.5 Formulas are trees!

Tree Notation

We’ve just said that we’re going to develop a formalism that allows us to describe
trees. But why trees? Shouldn’t we talk about formulas? The answer is that formulas
are trees - if you look at them the right way. Representing formulas as trees is simple.
You know that every formula of first order logic has a main connective. For instance,
a conjunction ϕ � ψ has the main connective � and the subformulas ϕ and ψ. So if
we know how to represent the two subformulas as trees, we can represent the whole
formula as a tree whose root node is labeled with the symbol � and the two trees for ϕ
and ψ as children. This works similarly with the other connectives. The leaves of the
tree are predicate symbols, constants, and variables.

New Representation of Atomic Formulae!

Finally, on the level of atomic formulas, we shall from now on write application of
predicates to arguments with the binary symbol @. (We have already seen this: We
indicate applications in λ-calculus the same way). Here’s one of our standard example
formulae in this notation (if you’re interested in the motivation behind our decision to
use this new notation, read the sidetrack (page 56) at the end of this chapter):

1.
�

x ��� MAN@x ���<��� y ��� WOMAN@y ���l��� LOVE@x � @y ���
2. � y ��� WOMAN@y ����� � x ��� MAN@x ���<��� LOVE@x � @y ���

Now have a look at the following tree representation of this formula:
� �
� �

@ �� MAN var � � �� �
@ �� WOMAN var � @ �

@ �� LOVE var �var �

?- Question!

In one respect, the tree above differs from the formula it represents. Do you see where?

Binding Edges

The answer to this question is that variables are represented differently in the tree rep-
resentation. We could have used variable names as we always have. But we will see
later that this would have lead us into problems when writing underspecified descrip-
tions. That’s why we explicitly link bound variables to their binders via binding edge
s. These are depicted as purple arrows in the picture above. Since these binding edges
tell us all there is to know about which variables are bound by which binders, we can
do away with variable names altogether, and it is sufficient to label variable nodes with
the symbol var and quantifier nodes with the symbols � and

�
. We will see in the

implementation section that this way of handling variable binding will even simplify
our implementation.

52 Chapter 3. Scope and Underspecification

3.2.6 Describing Lambda-Structures

There is of course no reason to restrict our new tree notation to formulas of first-order
logic. We can just as easily represent λ-expressions. All we have to do is to generally
represent application as a tree with the root symbol @ and subtrees for the functor
and the argument, and λ-abstraction as a tree with the root symbol lam. Again, we
use binding edges to represent variable binding, and thus don’t have to give a name
to the variable bound by the λ. We call a tree with binding edges for variable binding
a λ-structure . We can always convert a λ-expression (or a formula) into a unique
λ-structure. At the same time, every λ-structure represents a λ-expression (but not
uniquely): All we have to do is invent a new variable name whenever we hit a binder,
and then use this name for all bound variables.

Let’s look again at the λ-expressions that lead to the two first order formulae for ‘Every
man loves a woman’. We have seen these λ-expressions in Section 3.1.2, and repeat
them here:

i. � Every@λv ��� MAN@v ��� @ � λx � A@λw��� WOMAN@w ��� @ � λy ����� LOVE@y � @x �����
ii. � A@λw��� WOMAN@w ��� @ � λy ��� Every@λv��� MAN@v ��� @ � λx ����� LOVE@y � @x �����

We have switched again to representations where we abbreviate determiners such as
‘every’: Every stands for λPλQ

�
x � P@x � Q@x � . In the tree representations that

we look at now, we will continue to use such abbreviations, and also abbreviate the
simple λ-expressions and λ-structures for common nouns. Hence, from now on Every
abbreviates the λ-structure for λPλQ

�
x � P@x � Q@x � , and e.g. woman stands for the

λ-structure for λw� WOMAN@w.

Two lambda-structures...

If we represent the two readings of our example as λ-structures, we can identify the
three formula fragments relevant for the scope ambiguity we’re interested in as three
tree fragments. We have given them different colours in the picture below.

@ �
@ �

Every � man � lam �
@ �

@ �
A � woman � lam �

@ �
@ �

LOVE � var �var �

@ �
@ �

A � woman � lam �
@ �

@ �
Every � man � lam �

@ �
@ �

LOVE � var �var �

...but only one constraint graph

Now we can represent the information that is common to both readings in the following
graph:

@ �
@ �

Every � man � lam ��
@ �

@ �
A � woman � lam ��

@ �
@ �

LOVE � var �var �

3.2. Underspecification 53

We call a graph as in this picture a constraint graph . A constraint graph is a di-
rected graph that has node labels and three kinds of edges: ordinary solid edges, dotted
dominance edge s, and purple arrow binding edge s. It consists of several little tree
fragments which are internally connected with solid edges, and connected to other
trees with dominance edges. Binding edges generally go from variable nodes to binder
nodes.

3.2.7 From Lambda-Expressions to an Underspecified Description

Let us look at our example once more and go through step by step how we have con-
structed the constraint graph describing our two λ-expressions. We had to take four
steps:

1. We wrote down all (two) readings of the sentence, as λ-expressions:

(a) ��@
A�B5CND @λI�� MAN ��I���� @ � λ I����6J @λ D7�WOMAN �FD���� @λ D7� LOVE ��I�	6DG���
(b) �6J @λ D7�WOMAN �FDG��� @λ D7����@
A�B5CED @λ I�� MAN ��IG��� @ � λI7� LOVE ��I�	6DG���

2. We converted the readings into λ-structures:

@ �
@ �

Every � man � lam �
@ �

@ �
A � woman � lam �

@ �
@ �

LOVE � var �var �

@ �
@ �

A � woman � lam �
@ �

@ �
Every � man � lam �

@ �
@ �

LOVE � var �var �

3. We identified the common material in both λ-structures. Generally, each block of
common material must be contiguous (linked internally with only solid edges). It
may be a complete subtree (like the purple part), or it may be just a tree fragment
(like the other two parts).

@ �
@ �

Every � man � lam �
@ �

@ �
A � woman � lam �

@ �
@ �

LOVE � var �var �

@ �
@ �

A � woman � lam �
@ �

@ �
Every � man � lam �

@ �
@ �

LOVE � var �var �

4. We built an underspecified description that expresses what material the readings
contain, and what structural constraints we must obey when putting that material
together.

@ �
@ �

Every � man � lam ��
@ �

@ �
A � woman � lam � �

@ �
@ �

LOVE � var �var �

54 Chapter 3. Scope and Underspecification

What we have just done, namely going from a natural language sentence via all its
readings to an underspecified description, does not correspond to any part of our system
architecture (page 49). We started off from fully specified λ-structures. But once
we hold all λ-structures for a sentence in our hands, there is of course no point in
constructing an underspecified description any more. Yet we hope that our discussion
has given you a better idea of how this whole underspecification business works. Our
explanations should enable you to solve the following exercise.

3.2.8 Relating Constraint Graphs and Lambda-Structures

We’ve just seen pictures that gave us an intuitive idea of how λ-structures relate to
constraint graphs. Let’s now frame our intuition into a more formal definition. We
can say that a constraint graph describe s a λ-structure if it’s possible to embed the tree
fragments into the λ-structure. (In this case we also say that the λ-structure is a solution
of the constraint graph.) That is, we must be able to map the nodes of the constraint
graph to nodes of the λ-structure in a way that satisfies the following conditions:

1. Any node that has a label in the graph must have the same label in the λ-structure.

2. No two nodes that have a label in the graph must be mapped to the same node in
the λ-structure.

3. Any two nodes connected with a solid edge or a binding edge in the graph must
be connected in the same way in the λ-structure.

4. Whenever there is a dominance edge from a node X to a node Y in the graph,
there must be a path from X to Y using only solid edges in the λ-structure.

Intuitively again, embedding a constraint graph into a λ-structure is a bit of a jigsaw
puzzle: Overlay parts of the λ-structure with matching tree fragments so that no two
fragments overlap and all the dominances are respected. If you start with a constraint
graph and want to construct λ-structures that it describes, the puzzle character comes
out even more strongly, as you basically have to configure the tree fragments into a
valid λ-structure.

In the example, it is clearly possible to embed the fragments in the graph into each
of the two λ-structures; the embeddings indicated by the colouring also respect the
dominance requirements. Note that while different fragments do overlap at the borders,
there never are any two labeled nodes that are mapped to the same node in the structure.

3.2.9 Sidetrack: Constraint Graphs - The True Story

In the example, we have been able to cover the complete λ-structure with the fragments
in the constraint graph. This need not be the case in general: As the fragments only
have to be embedded into the λ-structure, it is possible that the latter contains some
material not mentioned in the graph.

3.2. Underspecification 55

More Flexibility

This makes sense from a computational point of view, considering that constraint
graphs are provably harder to deal with if solutions are not to contain additional mate-
rial. From a linguistic point of view, one can take the idea behind underspecification
even further, using the same formalism to deal not only with scope ambiguities, but
also with cases where, for example, a speech recognizer has failed to recognize certain
parts of the input. In such cases, we want flexibility to add more material to a solution
- in a controlled way, of course.

Embedding vs. Configuring

We will ignore this point here and assume that we’ll never need to invent any additional
material to solve the constraint graphs we get for scope ambiguities. So we can think
of the process of solving a constraint as configuring the fragments into a bigger tree.
It can be shown empirically that the distinction between configuring and embedding
makes no difference in practice [7].

The difference between embedding and configuring may become clearer with an ex-
ample given. Consider the following constraint graph:

� ��
@ �

f � a � @ �
g � b �

Additional material...

This constraint graph trivially has a solution. It starts with the topmost fragment. Then
we put an arbitrary label (like @) at the leaf of this fragment and say that this node
should have two children. The left child should be the root of the lower left fragment,
while the other child should be the root of the lower right one:

� �
@ �

@ �
f � a � @ �

g � b �
...or not?

But if we insist that we have to configure the fragments, without adding any new mate-
rial, the answer is not so clear. Only if one of the two lower fragments had an unlabeled
leaf, it would indeed be possible to configure them by attaching the other fragment to
this leaf. Otherwise, it is impossible to configure them; this is the case in the example.
Of course, it might take us a long time to figure out that we have plugged fragments
together in the wrong order if the graph is larger. That’s why computation becomes
harder when we restrict ourselves to configuration instead of embedding.

Although we have presented constraint graphs a bit informally here, they can be given
a very precise meaning as a shorthand notation for logical formulas, which then are
called normal dominance constraints . In fact, if you look at the literature on domi-
nance constraints [5], you’ll find that the logical formulas are always the first concept
to be defined, and the constraint graphs are then derived from them.

56 Chapter 3. Scope and Underspecification

3.2.10 Sidetrack: Predicates versus Functions

When we introduced our tree notation for formulas (in Section 3.2.5) we also said
that we use the application symbol @ in atomic formulas of first order logic and their
tree representations. So we write for instance the application WALK@MARY instead
of WALK � MARY � and the two nested applications � LOVE@MARY � @JOHN instead of
LOVE � JOHN 	 MARY � . We’ve introduced this as a simple change of notation, but in fact
there’s a somewhat deeper motivation behind it.

Using function symbols

Formally, the semantics of λ-expressions is generally defined in terms of functions,
and the symbol @ is understood as functional application of the functor (to the left of
the @) to the argument (to the right). Thus the semantics of an application A@B is the
result of applying the function denoted by A to whatever is denoted by B . Now with
our new notation (which is quite common for λ-based formalisms), this ‘function-and-
application perspective’ on the syntax and semantics is extended to atomic formulas.

What exactly does this mean?

1. Syntactically, what used to be predicate and relation symbols are treated alike,
as one-place function symbols that are combined with other symbols using the
application symbol @. n-ary predications are written as n nested applications.

2. This means that the semantics of our (former) predicate and relation symbols
has to be given in terms of unary functions if we want to interpret the @-symbol
as functional application consistently. In short, we have to re-define models
such that they interpret predicate symbols (which are by definition unary) as the
characteristic function of the set that we used to assign to the respective symbol.
The characteristic function of a set is the function that assigns TRUE to all entities
in that set, and FALSE to all other entities. Unary predications can then be stated
equivalently as application of such a function to the argument of the predication.
On this basis, n-ary predicates are interpreted as complex functions, allowing us
to express n-ary predications as a series of nested functional applications. This
series has to end with the application of the characteristic function of some set,
resulting in a truth value.

Examples: Expressing predicates by functions

This was a bit abstract, so here are two examples. First let’s look at the predicate
symbol MAN. Here, the situation is easy: A predicate symbol used to be interpreted
as the set of things in the extension of the respective predicate in the model under
consideration. In our example that’s the set of all men, (assuming that we’re looking
at a model that really interprets the symbol MAN as counterpart of the word ‘man’).
Now, we will simply use the characteristic function of that same set instead, hence in
our example the function that yields TRUE if its argument is a man (and thus would
have been in the extension of MAN in our old model), and false otherwise.

But what can we do for relation symbols? How do we give an interpretation in terms
of a unary function that corresponds in the right way to an n-ary relation? The solution
is to use functions that yield functions as a result. We can do this in such a way that

3.2. Underspecification 57

we finally arrive at the characteristic function of some set. Let us look at the example
of the (former) relation symbol LOVE. We used to interpret this symbol as the set of
ordered pairs such that the first element loves the second. Instead we will now interpret
it as a unary function that takes each entity to the characteristic function of the set of
all things that love that entity.

Let’s see how we interpret
LOVE � MARY 	 JOHN �

versus � LOVE@JOHN � @MARY

We shall assume that we are looking at a model where MARY is assigned Mary and
JOHN is assigned John. The first formula is true if the pair m Mary 	 John n is in the set
assigned to LOVE by our model. For the second formula, we will proceed in two steps.
First we apply the function that our model assigns to the symbol LOVE to John. This
yields the characteristic function of the set of ‘john-lovers’, which we apply in turn to
Mary. This final application gives us the result TRUE in case Mary loves John in our
model, and FALSE otherwise.

All other n-ary relations are treated analogously to our example: As functions that
yield the characteristic function of some set after n-1 applications. Clearly we can
characterize situations just as well using this functional way of speaking as we could
with our familiar relational approach.

Connection to lambda-calculus

What’s the great advantage of all this? As we’ve mentioned above, our new notation
and interpretation fit in well with λ-calculus. And now that we know something about
the interpretation of atomic formulas, we can see why this is so. If you’ve heard about
the interpretation of λ-expressions, you will realize that the functional interpretations
we’ve just discussed for our former predicate and relation symbols are constructed
exactly along the lines of the semantics for λ-expressions such as λx � MAN � x � and
λy � λx � LOVE � x 	 y � . In fact for any of our unary function symbols ‘written on its own’,
there’s an equivalent λ-expression where the functional character has been made ex-
plicit. We say that the function symbol is η-equivalent to its explicit λ-counterpart (and
the other way round). Strictly speaking, there are always many λ-expressions that are
η-equivalent to one function symbol, because (as usual) α-equivalence doesn’t make a
difference. Here’s an example: LOVE and λy ��� λx ��� LOVE@x � @y � are η-equivalent, and
so are LOVE and λs ��� λr��� LOVE@r � @s � , etc.

A simplification

For practical purposes this means that we can use the (shorter) function symbols for
common nouns directly in semantic construction, instead of their η-equivalent (long)
λ-terms. For example we used to write λx � MAN � x � (or, lately, λx � MAN@x) as the
translation of ‘man’, and translated the NP ‘a man’ as:

λP� λQ ��� y ��� P@y � Q@y � @λx � MAN � x �

58 Chapter 3. Scope and Underspecification

But now we know the functional semantics of MAN on its own, and so we know that
we can apply the determiner to that function directly, to the same effect:

λP� λQ ��� y ��� P@y � Q@y � @MAN

We will make use of this simplification in our implementation of CLLS (see in partic-
ular Section 4.3.1).

4

Constraint Solving

In this section we show how we can extract the semantic representations of the vraious
readings of a sentence from its constraimt graph, how to actually implement constraints
and an enumeration procedure, and how we can use our semantics construction frame-
work to derive constraints from the syntactic analysis of an NL sentence.

From Constraints to Formulae: Now we know how to describe the possible readings of
a scope ambiguity by means of a constraint graph. The next thing we need to find out
is how we can extract the semantic representations of the readings from the graph. This
is going to be the topic of the first part of this section. Later we will show you how to
actually implement constraints and an enumeration procedure. Last not least, you will
see how we can use our semantics construction framework to derive constraints from
the syntactic analysis of an NL sentence.

4.1 Constraint Solving

When we deal with solving underspecified descriptions, the two algorithmic problems
that concern us most are the following:

Satisfiability Given a constraint graph, we need to decide whether there is a λ-structure into which
it can be embedded.

Enumeration Given a constraint graph, we have to compute all λ-structures into which it can be
embedded.

These are the problems adressed in this section. The concept of a solved form will be
central to the solutions that we develop.

4.1.1 Satisfiability and Enumeration

One Remark!

Before we go into the matter of constraint solving, one remark is due. Below we will
use the words "constraint" and "constraint graph" interchangeably. Strictly speaking,
constraint graphs are the graphs we have drawn so far, whereas constraints are formulas
of a certain simple logic, which we have announced in Section 3.2.9 without defining

60 Chapter 4. Constraint Solving

it. But both representations can easily be translated into each other, so we’ll allow
ourselves some sloppy language.

When we deal with solving underspecified descriptions, the two algorithmic problems
that concern us most are the following:

Satisfiability Given a constraint graph, we need to decide whether there is a λ-structure into which
it can be embedded.

Enumeration Given a constraint graph, we have to compute all λ-structures into which it can be
embedded.

It is clear that the first problem is simpler than the second one. Whenever you have
an algorithm with which you can enumerate all solutions, you can just stop when you
have found the first solution, and say that the constraint is indeed satisfiable. And if it
turns out that you just can’t find a solution with your enumeration algorithm, you can
be sure that it’s unsatisfiable.

4.1.2 Solved Forms

Many solutions...

In fact, if you think about the enumeration problem a bit, you’ll notice that it is not
realistic to enumerate all λ-structures that solve the constraint: In general, there can
exist an infinite number of satisfying λ-structures into which the fragments can be
embedded while respecting the dominances. However, the differences between most
of the solutions are completely irrelevant additions of extra material. The situation
looks like this:

λ-Struct. 1 Formula 1

. . . Dominance
Constraint

λ-Struct. 1(b) Formula 1(b)

...

λ-Struct. 2 Formula 2

λ-Struct. 2(b) Formula 2(b)
...

Solve
Solve

Solve
Solve

Solve

Solve

In this example, we might only be interested in the two solutions 1 and 2 while the
"variants" 1(b) and 2(b) as well as all other variants with additional material inbetween
are pointless to us.

...few solved Forms

So instead of really trying to enumerate solutions (i.e. λ-structures), we reformulate
the problem to enumerate solved forms of the original constraint. Intuitively, solved
forms are themselves constraint graphs that each represent a class of solutions that
only differ in the addition of extra material. We will define them in a way that they
have the following useful properties:

4.1. Constraint Solving 61

� Every constraint graph has a finite number of solved forms.

� The solutions of all solved forms of a constraint taken together are the same as
the solutions of the original constraint.

� It is trivial to enumerate the solutions of a solved form.

Before we look at an example, let’s refine the scheme of our architecture (page 49)
once more:

Solved
Form 1

λ-Struct. 1 Formula 1

. . . Dominance
Constraint

λ-Struct. 1(b) Formula 1(b)

...
Solved
Form 2

λ-Struct. 2 Formula 2

λ-Struct. 2(b) Formula 2(b)
...

Solve

Solve

(minimal)

(other)

(minimal)

(other)

4.1.3 Solved Forms: An Example

A constraint graph...

Since the definition of solved given before forms might be a little too much on the ab-
stract side, let’s have a look at our running example ‘Every man loves a woman’ again.
Remember that the corresponding original constraint is (where, again, abbreviations
like Woman stand for the simple λ-structures).

@ �
@ �

every � Man � lam ��
@ �

@ �
a � Woman � lam ��

@ �
@ �

LOVE � var �var �

...two of its solutions...

Two of its solutions are the following λ-structures. (In fact these are the only solutions
we’ve been interested in so far. But remember that we can get lots of other solutions
by integrating new material):

@ �
@ �

every � Man � lam �
@ �

@ �
a � Woman � lam �

@ �
@ �

LOVE � var �var �

@ �
@ �

a � Woman � lam �
@ �

@ �
every � Man � lam �

@ �
@ �

LOVE � var �var �

62 Chapter 4. Constraint Solving

...and its two solved forms.

Now while the constraint graph has an infinite number of solutions, it has precisely two
solved forms:

@ �
@ �

every � Man � lam ��
@ �

@ �
a � Woman � lam ��

@ �
@ �

a � Woman � lam ��
@ �

@ �
every � Man � lam ��

@ �
@ �

LOVE � var �var � @ �
@ �

LOVE � var �var �

If you look at the solved forms, you’ll see that they’re very close to the λ-structures –
the graphical difference only consists in the dominance edges, which allow the addition
of extra material. We can get from the solved forms to the two solutions that we saw
above by simply identifying the end points of each dominance edge.

However, it is important to remember that the solved forms are not solutions, i.e. λ-
structures! They are still constraint graphs. They do have the special property that
if you disregard the binding edges, these graphs are trees, but they can still contain
dominance edges.

4.1.4 Defining Solved Forms

Summing up, we say that a constraint graph is in solved form if it has certain proper-
ties that guarantee its satisfiability and make it trivial to enumerate its solutions. The
solved forms of a constraint are constraints in solved form that each represent a class
of solutions of the original constraint that have only "irrelevant" differences. Every
solution of the original constraint is a solution of one of the solved forms; and vice
versa.

Let us now define what a solved form is. A constraint graph is in solved form if:

1. It has no cycles that use only solid and dominance edges.

2. It has no node with two incoming edges that are solid or dominance.

You can easily verify that if you disregard the binding edges, every graph in solved
form is a tree. As it is forbidden that a node with a node label has an outgoing domi-
nance edge in a constraint graph, you get a tree that consists of the little tree fragments
of the original constraint, with dominance edges going from (unlabeled) leaves to roots.

From Solved Forms to Solutions

Now how do we get from a solved form to an actual solution? As we have already
said, this step is going to be quite trivial. In general, there are two cases we have to
distinguish:

4.2. An Algorithm For Solving Constraints 63

1. If we’re lucky, the solved form will not contain any nodes with two outgoing
dominance edges anyway. In this case, we can simply identify the endpoints
of each dominance edge, and we obtain a minimal λ-structure that satisfies the
solved form. As it happens, all of the solved forms we’ll get for underspecified
semantics will belong to this class.

2. Otherwise, we could do the same operation as in Section 3.2.9: For each node
with more than one outgoing dominance edge, we add an arbitrary node label,
and make the dominance children real children over solid edges.

As you can see, it’s always possible to construct a rather small solution to a solved
form very easily. In particular, you know that solved forms are always satisfiable.

4.2 An Algorithm For Solving Constraints

Given a solved form of a constraint it is almost trivial to get to a solution for it. What we
don’t know yet is how to get to the solved form itself, given an arbitrary constraint. In
this section, we’ll formulate an algorithm that enumerates the solved forms of arbitrary
constraints.

As we have argued before, it is almost trivial to get to a solution from a solved form.
What we don’t know yet is how to get to the solved form itself, given an arbitrary
constraint. In this section, we’ll formulate an algorithm that enumerates the solved
forms of an arbitrary constraint.

Our overall strategy will be as follows: starting with an arbitrary constraint graph, we’ll
try to work our way towards a set of constraints in solved form that together have the
same solutions as the original constraint. For this, we’ll use the algorithm discussed
in the following part of this lecture. The set of solved forms will be the output of this
algorithm.

If we like to, we can then proceed to enumerate solutions (or just minimal solutions) of
the solved forms after this, in the way described in the last section. But we don’t have
to.

Eliminate double incoming dominance edges

The main property of solved forms that we try to establish in our algorithm is that
there are no nodes with two incoming dominance edges. Thus the central task of our
algorithm is eliminating such nodes. We will now look in detail at the three steps that
make up the algorithm: Applying the so called Choice Rule, Parent Normalization and
Redundancy Elimination.

4.2.1 The Choice Rule

The key insight that we exploit in the algorithm is the following. Suppose you have a
node with two incoming dominance edges:

� x � y

� z

64 Chapter 4. Constraint Solving

Any solution of this constraint must be a tree (plus binding edges). Since trees don’t
branch upwards, this means that the only way in which two different nodes can domi-
nate a third one is if one of them, in turn, dominates the other.

Pursuing two alternatives.

Of course we don’t know beforehand which of the two has to be the higher node in
the solution; in principle, both choices can lead to solutions. We can thus formulate
the Choice Rule as follows: If Z is a node with dominance edges from X to Z and Y
to Z, add either the dominance edge from X to Y or the dominance edge from Y to X.
Graphically:
� x � y

� y � x

� z � z
Because of the argument we just made, we don’t lose solutions in this way: Any solu-
tion has either the dominance from X to Y or vice versa.

We will refer to this rule both as the Choice Rule (because it chooses either X or
Y to dominate the third node) and as the Distribution Rule . This second name is
motivated from a programming paradigm called Constraint Programming, in which
case distinctions are referred to as "distribution". The Choice Rule is the only case
distinction which we use in our enumeration algorithm.

4.2.2 Normalization

Cleaning up

The Choice Rule is the driving force behind the enumeration process: It resolves one
node that keeps the constraint from being in solved form by adding additional domi-
nance edges. However, the Choice Rule can’t operate on its own. It needs some helpers
that clean up after it has done its job. This cleaning work is what we call normalization
.

Parent Normalization

The first kind of normalization we need to apply is necessary because X and Y above
are generally leaves of bigger tree fragments. This means that an application of the
Choice Rule gets us into a situation where e.g. Y has an incoming dominance edge and
an incoming solid edge – which is not allowed in a solved form:

@ �
G � � x

@ �
F � � y� z

Fortunately, we can resolve this configuration easily. The key observation is that X and
Y cannot be mapped to the same node in a solution, as their parents must be different.
Thus we can infer that X must dominate not just Y, but the parent of Y:

4.2. An Algorithm For Solving Constraints 65

@ �
G � � x

@ �
F � � y� z

We can continue with this kind of inference; the sequence of inference steps will stop
when we have deduced that X dominates the root of Y’s fragment, which now doesn’t
have an incoming solid edge any more. We call this step parent normalization .

Redundant Edges

The other kind of normalization we need removes redundant dominance edges. A re-
dundant dominance edge is one which we can remove from a constraint graph without
losing information. For example, if we add the edge from X to Y in the Choice Rule,
the old dominance edge from X to Z becomes redundant: Even when we remove it, the
graph still expresses that there must be a path from X to Y and a path from Y to Z, so
there must of course also be a path from X to Z. Here are the solutions of our example
constraint without the unnecessary edges:

� x � y

� y � x

� z � z
We call the operation of removing unnecessary dominance edges redundancy elimi-
nation . Redundancy elimination can be done quite efficiently using a standard graph
algorithm called transitive reduction.

?- Question!

It’s important that we always apply parent normalization before redundancy elimina-
tion. Can you tell why?

4.2.3 The Enumeration Algorithm

The Algorithm

We obtain a sound and complete enumeration algorithm for solved forms by putting
these steps together in the following way:

1. Apply redundancy elimination and parent normalization as long as possible.

2. If there are still nodes with two incoming dominance edges, pick one and apply
the Choice Rule once. Then continue with step 1 for each of the two resulting
graphs.

3. Otherwise, the graph either has a cycle or is in solved form.

66 Chapter 4. Constraint Solving

Checking for Cycles

It is very easy to check whether a graph has a cycle: The standard algorithm for this is
depth-first search. This check has to be performed once for each potential solved form.
Because the algorithm has eliminated all nodes with more than one incoming edge by
this time, we know that every graph that passes this final test is indeed a solved form.

Efficiency Issues

Each component of the enumeration algorithm is quite efficient, and even though it is
very simple, the complete algorithm is one of the more efficient algorithms for enu-
merating solutions of underspecified descriptions. But because the Choice Rule has
to make an uninformed choice, and it’s quite possible that one of the two results is
unsatisfiable, there is a possibility that our algorithm spends a lot of time failing, even
if the input graph has very few solved forms. What’s worse is that, if we’re unlucky,
we might explore the branches of the search tree that lead to unsatisfiable constraints
first, and it might take a long time before we find even the first solution. This means
that although the enumeration algorithm gives us a satisfiability test, it’s by no means
a very efficient one.

It’s possible to write a special satisfiability test that runs very efficiently (in linear time);
but this algorithm employs rather advanced graph algorithms that we can’t discuss here.
We can use this satisfiability algorithm in turn to guide the enumeration: Whenever
we apply Choice, we can check both results for satisfiability, and if one of them is
unsatisfiable, we don’t need to spend any time at all on exploring the search tree below
this constraint. Our algorithm above would have continued a fruitless computation on
the unsatisfiable constraint, and only discovered the unsatisfiability in the very end.
In effect, such an early satisfiability test can dramatically speed up the enumeration
process.

4.3 Constraint Solving in Prolog

After that much of theory we come to our implementation of constraint solving in
Prolog. First, we will see how our constraints are represented in Prolog. Then we
will look at how they are brought into solved form. As we have said above, it is
quite straightforward to convert solved forms into solutions and then into our good
old λ-expressions. We leave it as an exercise to you to work through that part of our
implementation.

4.3.1 Prolog Representation of Constraint Graphs

In the rest of this chapter, we will explain how to implement the constraint solver
in Prolog. First of all, let’s have a look at how we represent a constraint graph in
Prolog. We represent such a graph as a collection usr(Ns,LCs,DCs,BCs) of four lists.
These lists contain all ingredients of constraint graphs: nodes (Ns), labeling constraints
(solid edges: LCs), dominance constraints (dotted edges: DCs), and binding constraints
(dashed arrows: BCs). usr stands for underspecified representation. In other words, we
represent the graph by specifying its nodes and its various types of edges. Incidentally,
this syntax is extremely similar to the notation as logical formulas (constraints) that we
have mentioned above.

4.3. Constraint Solving in Prolog 67

Nodes and Labelings

Nodes are simply Prolog atoms: Each node gets a unique name. The labelings are terms
which are composed with the Prolog inbuilt operator :. For example, x0:(x2@x1)
means that the node x0 is labeled x2@x1. Note that this labeling constraint tells you
two things at once, namely that:

1. x0 has the label @.

2. x0 has two daughters over solid edges: x1 and x2.

Dominances and Bindings

The Prolog notation for a dominance edge is dom(x0,x1). Finally, a binding edge
stating the fact that the variable for which the (var-)node x1 stands for is bound by the
(lam-)node x0 is represented as bind(x1,x0).

Here is a sample constraint for ‘John walks’:

usr([x0,x1,x2],[x0:(x2@x1),x1:john,x2:walk],[],[]).

In the more familiar tree representation:

@ � 07o
WALK � 07p JOHN � 0?q
If you experiment with the implementation later, you will notice that the constraint
graphs soon become large and somewhat unreadable. For example, here’s the repre-
sentation for ‘A woman walks’:

usr([x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17],

[x0:(x17@x1),x1:var,x2:(x3@x4),x3:(x6@x16),x4:lambda(x5),

x6:lambda(x7),x7:lambda(x8),x8:exists(x9),x9:(x10& x11),

x10:(x12@x13),x11:(x14@x15),x12:var,x13:var,x14:var,x15:var,

x16:woman,x17:walk],

[dom(x5,x0)],

[bind(x1,x4),bind(x12,x6),bind(x13,x8),bind(x14,x7),bind(x15,x8)]).

But if you look closely, you’ll notice that this long term is really nothing but a repre-
sentation of the following graph, constructed in a way that allows for better use in a
program:

@ �
@ �

lam �
lam �
� �� �

@ �� var var � @ �� var var �

� WOMAN
lam ��

@ �� walk � var

And if you look closely at this constraint graph, you’ll notice another thing: We’ve
used the predicate symbol WOMAN instead of the abbreviation Woman. But didn’t we

68 Chapter 4. Constraint Solving

say that Woman abbreviates λx � WOMAN@x? In fact, for all common nouns (that is,
also for ‘man’, ‘siamese cat’, etc.), we will directly use the predicate symbol instead
of a λ-term in our implementation. This will make the semantic macro for common
nouns a bit easier. Have a look at the sidetrack in Section 3.2.10 to see why this is
possible.

4.3.2 Solve

See file solveConstraint.pl.

The main predicate of our constraint solver is solve/2 (to be found in solveConstraint.pl).
This predicate is a straightforward implementation of the enumeration algorithm from
Section 4.2.3. It takes a constraint graph as its first argument, and returns the list of
its solved forms in the second argument. Our solve/2-predicate calls some low-level
predicates that implement normalization and distribution. We will define these predi-
cates later.

The predicate solve/2 itself consists of three clauses. Its first clause handles the case
of a constraint graph that still contain one or more nodes with two incoming dominance
edges. It normalizes the input graph, and then calls distribute/3 to select one such
node and compute the two constraints with the additional dominance edge (hence it
corresponds to the Choice Rule discussed above (page 63)). Then it calls itself recur-
sively, once for each of the two alternatives, and appends the two lists of solved forms
thus obtained.

solve(Usr,Solutions) :-

normalize(Usr,NormalUsr),

distribute(NormalUsr,Dist1,Dist2),

solve(Dist1,Solutions1),

solve(Dist2,Solutions2),

append(Solutions1,Solutions2,Solutions).

See file cllsLib.pl.

The second clause takes care of the base case, a constraint graph in which no node has
two incoming dominance edges. It is used only if the call to distribute/3 in the first
clause fails (as we shall see shortly, normalize/2 can never fail). Such a graph is a
solved form iff it has no cycles, which we check with the predicate hasCycle/1 (from
cllsLib.pl).

solve(Usr,[NormalUsr]) :-

normalize(Usr,NormalUsr),

\+ hasCycle(NormalUsr).

If the constraint graph does have a cycle, the second clause will fail as well. In this
case, the following final clause applies. It simply returns an empty list of solved forms.
We can’t just let it fail because in that case, the entire original call of solve/2 would
fail. This is wrong in general because it’s very possible that the original constraint has
solutions, but we have made some wrong choices along the way that have made our
current graph unsatisfiable.

solve(_Usr,[]).

4.3. Constraint Solving in Prolog 69

?- Question!

Look at the implementation of hasCycle/1 in cllsLib.pl and explain in your own
words how this test works.

4.3.3 Distribute

See file solveConstraint.pl.

The predicate distribute/3 (from solveConstraint.pl) implements the Dis-
tribution Rule (or Choice Rule (page 63)). It takes a constraint graph as its first argu-
ment, picks a node Z with two incoming dominance edges (from X and Y), and applies
the Distribution Rule to them. It returns the two constraint graphs that are obtained by
adding a dominance edge between X and Y in either direction. The predicate fails if the
input constraint doesn’t contain such a node Z with two incoming dominance edges.

distribute(usr(Ns,LCs,DCs,BCs),usr(Ns,LCs,[dom(X,Y)|DCs],BCs),usr(Ns,LCs,[dom(Y,X)|DCs],BCs)) :-

member(dom(X,Z),DCs),

member(dom(Y,Z),DCs),

X \== Y.

The two calls of member/2 check that there are in fact two dominance edges dom(X,Z)
and dom(Y,Z) in the list of dominance edges DCs of the incoming constraint. By
adding X \== Y, we make sure that X and Y are different nodes. Otherwise, it would
be possible to add dominances like dom(X,X).

4.3.4 (Parent) Normalization

See file solveConstraint.pl.

What remains to be implemented now is the normalization of constraints (see Sec-
tion 4.2.2). It is done in two steps: First, parent normalization is performed, and
secondly redundant dominance edges are removed. The predicate normalize/2 (in
solveConstraint.pl) calls the respective predicates. It accepts a constraint graph as
input, and returns the normalized graph.

normalize(Usr,Normal) :-

liftDominanceConstraints(Usr,Lifted),

elimRedundancy(Lifted,Normal).

Parent Normalization

The predicate liftDominanceConstraints/2 (from solveConstraint.pl) re-
cursively goes through all dominance edges. If there is a dominance edge dom(X,Y)

and the node Y is a child of the node Z via a solid edge, the dominance edge is lifted
and becomes dom(X,Z). Here is the code:

liftDominanceConstraints(Usr,Lifted) :-

Usr = usr(Ns,LCs,DCs,BCs),

mySelect(dom(X,Y),DCs,RestDCs),

idom(Z,Y,Usr),!,

liftDominanceConstraints(usr(Ns,LCs,[dom(X,Z)|RestDCs],BCs),Lifted).

liftDominanceConstraints(Usr,Usr).

70 Chapter 4. Constraint Solving

See file cllsLib.pl.

The predicate mySelect/3 removes the dominance edge dom(X,Y) from DCs and
the list RestDCs now contains the remaining dominance edges. Then, idom/3 (see
cllsLib.pl) succeeds iff the node Z immediately dominates the node Y, i.e. there is
a solid edge from Z to Y. If this is the case, the parent normalization is continued with
a constraint that is like the input constraint. Except for the list of dominance edges
which now contains all but the removed ("lifted") edge, plus the new edge dom(X,Z).
In other words, dom(X,Y) has become dom(X,Z).

An an exercise you can try to reimplement this predicate using a simple member check
instead of select.

4.3.5 Redundancy Elimination

The second normalization step described in Section 4.2.2 is the elimination of redun-
dant dominance edges. The implementation we present here doesn’t use the transitive
reduction algorithm we mentioned earlier, but simply goes through each dominance
edge in the graph and checks whether the lower end can still be reached from the up-
per end if the dominance edge is removed. This algorithm is slower than transitive
reduction, but much simpler.

elimRedundancy(usr(Ns,LCs,DCs,BCs),Irredundant) :-

mySelect(dom(X,Y),DCs,DCsRest),

reachable(Y,X,usr(Ns,LCs,DCsRest,BCs)),!,

elimRedundancy(usr(Ns,LCs,DCsRest,BCs),Irredundant).

elimRedundancy(Usr,Usr).

See file cllsLib.pl.

First, a dominance edge dom(X,Y) is removed from DCs. Second, it is checked whether
the node Y is still reachable from the node X (the predicate reachable/3 can be
found in cllsLib.pl). If so, the removed dominance edge was redundant. In this
case, the redundancy elimination continues with a constraint containing all remain-
ing dominance edges (DCsRest). Note that in this case, the cut prevents any further
backtracking.

But what happens if a dominance edge that is necessary for establishing some reacha-
bility in the graph is deleted? Well, in this case reachable/3 fails and backtracking
selects (and removes) another dominance edge instead, checking the reachability again
afterwards. Eventually all redundant edges will have been removed, at which point all
calls to reachable/3 will fail, and the second clause is used to return the irredundant
graph.

?- Question!

Look at the declaration of reachable/3 in cllsLib.pl and explain in your own
words, how reachability is checked there.

4.4. Semantics Construction for Underspecified Semantics 71

4.4 Semantics Construction for Underspecified Semantics

In this section we show you to you can derive underspecified representations from
syntactic analyses. The semantics construction algorithm we present here uses the
syntax/semantics framework laid out in the earlier chapters of this course.

To conclude our chapter on underspecification, we will show you how you can derive
underspecified representations from syntactic analyses. The semantics construction
algorithm we present here uses the syntax/semantics framework laid out in the earlier
chapters of this course. The relevant changes are:

1. Devising the semantic macros that provide the meanings of words on the lexical
level.

2. Giving the combine-rules that combine smaller constraint graphs for subphrases
to larger ones representing the meanings of the larger phrases.

As you will see, the division of labour between the two types of rules is different than
what it used to be. Our implementation of Montague semantics was highly lexicalized:
The lexical entries were relatively rich, and the combine-rules just told us what was the
functor and what was the argument in a functional application. Here it’s going to be the
other way round: Most lexical entries are going to be very simple, and the combination
rules will do most of the work.

4.4.1 The Semantic Macros

See file clls.pl.

Most of the semantic macros we need (to be found in clls.pl) are very simple
constraint graphs representing a single labeled node. Let’s look at the simple graphs
first.

4.4.1.1 The Simple Macros

See file clls.pl.

For example, the macro for proper names looks like this:

pnSem(Symbol,usr([Root],[Root:Symbol],[],[])).

That is, the meaning of the word ‘John’ (Symbol=john) is a node labeled JOHN:

JOHN �
The macros for nouns, transitive and intransitive verbs, and prepositions are similar

nounSem(Symbol,usr([Root],[Root:Symbol],[],[])).

tvSem(Symbol,usr([Root],[Root:Symbol],[],[])).

ivSem(Symbol,usr([Root],[Root:Symbol],[],[])).

prepSem(Symbol,usr([Root],[Root:Symbol],[],[])).

72 Chapter 4. Constraint Solving

Prolog Variables Again

Note that the general semantics construction framework requires us to use variables
for the nodes – called Root in the macros mentioned above. On the other hand, in
Section 4.3.1 we said that we want to represent nodes as atoms. This is the same
trick we saw before when doing semantics construction with the λ-calculus. Again,
we will undo this cheat by "atomizing" all Prolog variables (nodes) after the semantics
construction is finished.

4.4.1.2 Macros for the Determiners

See file clls.pl.

Determiners get a slightly more complex semantics. Here are the semantic macros for
‘every’ (with the label uni) and ‘a’ (with label indef):

detSem(uni,usr([Root,N1,N2,N3,N4,N5,N6,N7,N8,N9],

[Root:lambda(N1),N1:lambda(N2),N2:forall(N3),N3:(N4 > N5),

N4:(N6@N7),N5:(N8@N9),N6:var,N7:var,N8:var,N9:var],

[],

[bind(N6,Root),bind(N7,N2),bind(N8,N1),bind(N9,N2)])).

detSem(indef,usr([Root,N1,N2,N3,N4,N5,N6,N7,N8,N9],

[Root:lambda(N1),N1:lambda(N2),N2:exists(N3),N3:(N4 & N5),

N4:(N6@N7),N5:(N8@N9),N6:var,N7:var,N8:var,N9:var],

[],

[bind(N6,Root),bind(N7,N2),bind(N8,N1),bind(N9,N2)])).

These structures look quite intimidating, but if you look at the corresponding constraint
graphs, you’ll see that e.g. the macro for ‘every’ is nothing but a description of the
term λPλQ � � x � P@x � Q@x � . To make it easier to check that the semantic macro
detSem(uni,...) given above really corresponds to this tree representation, we have
decorated the tree backbone with the respective PROLOG-variables (see below on the
right).

lam �
lam �� �
� �

@ �� var var � @ �� var var �

� Root� N1� N2� N3� N4� N6 � N7
� N5� N8 � N9

Just in order to make life easier for us from now on, we’ll abbreviate the graphs for
determiners as follows:

�
every

We can do this safely because the root of the subgraph is the only node we’ll have to
refer to below.

4.4. Semantics Construction for Underspecified Semantics 73

4.4.2 The combine-rules

See file clls.pl.

Now let’s have a look at the combine-rules that parallel the syntax rules and combine
the constraint graphs for subphrases to the constraint graph for a larger phrase.

The First Node is the Root

The general principle is that each constituent of the sentence is associated with a part
of the final constraint graph. We’re going to maintain the invariant that the first node
in the node list of such a partial graph is the root of this subgraph. The graphs for
different constituents are combined by adding constraints that relate their roots.

One simple but central predicate we make use of here is mergeUSR/2 (see cllsLib.pl).
It combines constraint graphs by merging their respective lists; the root of the merged
graph will be the root of the first (leftmost) graph that was given to mergeUSR/2.

Most of the combine-rules are trivial. They simply lift the semantics of some syntac-
tic category to that of a higher category without adding any further material. As an
example, see the rule

!�" � "�!
:

combine(np1:A,[pn:A]).

We present the more complex combine-rules below, except for one (namely
! �!sr�t)). We leave the formulation of this rule to you as an exercise.

4.4.2.1 � !�" # "
Let’s first look at the rule that builds sentences out of an NP and a VP. (Think of a
sentence like ‘John walks’ for now; we’ll get to quantifiers later.) The combine rule
for this syntax rule is as follows:

combine(s1:S,[np2:NP,vp2:VP]):-

NP = usr([NPRoot|_],_,_,_),

VP = usr([VPRoot|_],_,_,_),

NewUsr = usr([Root],[Root:(VPRoot@NPRoot)],[],[]),

mergeUSR(merge(NewUsr,merge(NP,VP)),S).

Again, it may be helpful to look at the graph representation of this rule.

@ �` ��# " � !
"
As you can see, the new constraint graph describes λ-structures in which the VP mean-
ing is applied to the NP meaning. This is basically like our very first naive analysis of
how NPs and VPs are combined semantically. It still works because the trick that we
developed in order to get a uniform treatment of the NP semantics in λ-calculus is now
compiled into the combine rule for NPs, which we’ll deal with in a minute. For now,
just observe that we combine the verb phrase and the noun phrase straightforwardly
and according to our intuitions: The verb phrase is the functor and the noun phrase
its argument. The results we get (after β-reduction) are the same as with Montague
Semantics.

74 Chapter 4. Constraint Solving

More technically, the clause of combine/2 first extracts the roots of the constraint
graphs for the two constituents, NPRoot and VPRoot. It then introduces a new node
and a new labeling constraint, and merges it with the subgraphs of the constituents.

For the example we suggested above, "John walks", the following happens. First, the
semantic macros provide the semantics on the lexical level:

John � JOHN usr([x1],[x1:john],[],[])

walks � WALK usr([x2],[x2:walk],[],[])

And here is the result of the combine-rule:

John walks @ �� WALK � JOHN
usr([x0,x1,x2],[x0:(x2@x1),x1:john,x2:walk],[],[])

This graph describes the λ-structure representing the λ-term Walk@ john, or written in
a more familiar way, Walk � john � .

4.4.2.2 !�" �vu &Gw !
Now let’s see how we can combine determiners and nouns into NPs. This is a slightly
complex but very interesting rule, as it takes care both of the correct binding of a
variable bound by a quantifier, and of the introduction of the dominance edges we need
in order to represent scope ambiguities.

The rule looks as follows:

combine(np1:NP,[det:DET,n2:N]) :-

DET = usr([DETRoot|_],_,_,_),

N = usr([NRoot|_],_,_,_),

NewUsr = usr(

[Root,N1,N2,N3,N4],

[N1:(N2@N3),N2:(DETRoot@NRoot),N3:lambda(N4),Root:var],

[dom(N4,Root)],

[bind(Root,N3)]),

mergeUSR(merge(NewUsr,merge(DET,N)),NP).

Again, this becomes more readable when written as a constraint graph:

@ �
@ �� u &�w � ! lam � �

var � !�"
The root of an NP is a var-node.

The root of the constraint graph for the entire NP is the node Root, i.e. the node which
is labeled with var. Although this may seem a bit counterintuitive, it is extremely
useful considering how the NP will later combine with a VP (see Section 4.4.2.1). The
VP semantics will be applied to the root of the NP graph. That is, the verb semantics
will be applied to a variable that is bound by the quantifier – exactly what we want!
Consider the constraint for ‘a woman walks’ given below. We show the last step of
semantics construction and one parent normalization step.

4.4. Semantics Construction for Underspecified Semantics 75

!�"
and before unification... ...after unification.

@ �
@ �

u &�w �
A

! � WOMAN
lam ��
var � !�" @ �# " � WALK � !�"

@ �
@ ��

A

� WOMAN
lam � �

@ �� WALK var �
...after normalization.

@ �
@ ��

A

� WOMAN
lam � �

@ �� WALK var �
Look at the leftmost graph. On top you see the representation of an NP as discussed
above. Here, the representation of the determiner A (abbreviated in the figure) and the
noun representation WOMAN have already been integrated (by unification). Below you
can see the representation of an S where the VP WALK has already been found. The
next (and last) step in semantics construction is the integration of the NP into the S, i.e.
the unification of the root node of the NP and the NP node of the S.

The result of this unification can be seen in the middle graph. This constraint graph is
the underspecified representation for the sentence ‘a woman walks’. With the help
of one simple parent normalization step, we end up with the solved form of this
graph which can be seen on the right. A minimal solution hereof is the following
λ-expression:

A@WOMAN@ � λx �WALK@x �
which probably looks much more familiar to you. Now we can now fully realize just
how convenient binding constraints are. We can simply relate the variable and its
binder within a single semantics construction rule; they are connected forever with
an unbreakable link, and we don’t have to think at all about variable naming. We
could unify both NP nodes in the example above and got walk@var (we christened the
variable represented by var x in the λ-expression given above). If the NP is a proper
name as in ‘John walks’, the same mechanism unifies the NP node of the sentence with
JOHN as we have seen in Section 4.4.2.1. Finally, the remaining dominance edge from
in the solved form is one of those dominance edges that can lead to the representation
of a scope ambiguity in other configurations. Next, you can see this example with fully
expanded determiner.

4.4.2.3 Example: ‘A woman walks’

Here you can see the example from above with fully expanded determiner.

76 Chapter 4. Constraint Solving

@ �
@ �

lam �
lam �
� �� �

@ �� var var � @ �� var var �

� WOMAN
lam ��

@ �� walk � var

Make sure that the λ-expression corresponding to this graph is reducable to a normal
FO formula.

4.4.2.4 # " �vx # !
" , "�" � "
y�z�"P!
" , and ! � !P"
"
The combine-rules for # " �vx # !�" and

"�" � "Gy7z
"{!�"
work exactly like the rule �!�" # " (see Section 4.4.2.1). Again, their function is simply to introduce an application:

combine(v1:V,[tv:TV,np2:NP]) :-

TV = usr([TVRoot|_],_,_,_),

NP = usr([NPRoot|_],_,_,_),

NewUsr = usr([Root],[Root:(TVRoot@NPRoot)],[],[]),

mergeUSR(merge(NewUsr,merge(TV,NP)),V).

combine(pp:PP,[prep:Prep,np2:NP]) :-

Prep = usr([PrepRoot|_],_,_,_),

NP = usr([NPRoot|_],_,_,_),

NewUsr = usr([Root],[Root:(PrepRoot@NPRoot)],[],[]),

mergeUSR(merge(NewUsr,merge(Prep,NP)),PP).

Finally, here is the rule that combines a
! +-|�. and a

"�"
to form an

!
(think of phrases

like ‘therapist with a siamese cat’):

combine(n1:N,[noun:Noun,pp:PP]) :-

Noun = usr([NounRoot|_],_,_,_),

PP = usr([PPRoot|_],_,_,_),

NewUsr = usr(

[Root,N1,N2,N3,N4,N5,N6],

[Root:lambda(N1),N1:(N2 & N3),N2:(NounRoot@N4),N4:var,N5:(PPRoot@N6),N6:var],

[dom(N3,N5)],

[bind(N4,Root),bind(N6,Root)]),

mergeUSR(merge(NewUsr,merge(Noun,PP)),N).

?- Question!

Can you see what this rule does? Compare it to the local macros for the determiners
(see Section 4.4.1.2)!

4.5 Running CLLS

This section introduces the driver predicate clls/0 for CLLS-based semantic con-
struction, and contains links to all files needed for running the program.

4.5. Running CLLS 77

See file clls.pl.

Now, it is time to present the driver predicate clls. Here it is:

clls :-

readLine(Sentence),

parse(Sentence,UsSem),

resetVars,vars2atoms(UsSem),

% printRepresentations([UsSem]),

solve(UsSem,Sems),

% printRepresentations(Sems),

usr2LambdaList(Sems,LambdaTerms),

% printRepresentations(LambdaTerms),

betaConvertList(LambdaTerms,Converted),

printRepresentations(Converted).

You have already seen the first three calls triggering the semantics construction and
instantiating the Prolog variables in Section 2.5. Once we have constructed the con-
straint, solve/2 computes all its solved forms. Finally, usr2LambdaList/2 translates
the list of solved forms to a list of "traditional" λ-terms. All that is left to do is to
β-convert these terms.

Check it out!

Here, you can see the five readings for ‘Every owner of a siamese cat loves a therapist’:
clls(silent,[every,owner,of,a,siamese,cat,loves,a,therapist]).

You may uncomment any of the calls of printRepresentations/1 if you wish to
inspect the constraint graphs more closely. For the above example, it will look like
this: clls(verbose,[every,owner,of,a,siamese,cat,loves,a,therapist]).

Code Summary

See file clls.pl. Driver, combine-rules, semantic Macros.
See file solveConstraint.pl. Solving: normalization and distribution.
See file cllsLib.pl. Working with USRs, tree predicates, translation of solved forms into λ-terms.
See file englishGrammar.pl. The DCG-rules and the lexicon (using module See file englishLexicon.pl.). From here, the combine-rules and lexical macros are called.
See file betaConversion.pl. β-conversion.
See file comsemLib.pl. Auxiliaries.
See file comsemOperators.pl. Operator definitions.
See file signature.pl. Generating new variables
See file readLine.pl. Reading the input from stdin.

78 Chapter 4. Constraint Solving

5

Inference in Computational
Semantics

Up to now we have seen various ways to construct logical formulae as meaning repre-
sentations for sentences. But we don’t yet know what to do further with such formulae.
We will now learn how to do useful work with such meaning representations.

If we utter a sentence, we transport information. One way of exploiting this informa-
tion is to find out what follows from the sentence. The parallel task on the level of
meaning representations is that of inference from the formula for that sentence. Know-
ing what follows from a sentence is an indispensable ingredient of understanding it.
Correspondingly, finding out what can be inferred from the formula constructed for a
sentence is a very important task in computational semantics. Here are some of the
reasons why this is so:

� Often, we can only fully understand a sentence by inferring from it (together
with our background knowledge). For example if we ask someone whether he
has already listened to the latest record of Carla Bley, he may answer ‘Oh, I hate
Jazz!’. To understand this as an answer to our question, we have to infer that he
in fact has not listened to the record (maybe due to his musical half-heartedness).

� Inference from a sentence may be necessary to react properly to it, e.g. to answer
a question.

� Already in the process of meaning construction itself, inference may help us
reduce the number of readings that can be constructed. This may greatly reduce
the load for subsequent processing stages.

In this chapter, we will develop a method to get a grip on the notion of logical conse-
quence operationally: We will see how we can use syntactic calculi to compute what
follows from a formula. But in order to understand this, we first have to repeat some
of the basic semantic concepts of first-order logic.

5.1 Basic Semantic Concepts

This section discusses the most important aspects of the semantics of first-order logic.
The two central concepts introduced are those of first-order model and truth in a model.

80 Chapter 5. Inference in Computational Semantics

Intuitively, we perceive of first-order formulas as descriptions of certain situations.
First order models correspond to such situations, in which given descriptions may be
true or false.

5.1.1 Models

The task of logical semantics is to define how formulas are evaluated in models. In
general terms, the purpose of the evaluation process is to tell us whether a description
is true or false in a situation.

So what is a model? Actually, what we’ve just said already pretty much contains
the answer to this: A model is like a situation - and a situation is a semantic entity,
providing us with a certain amount of things we can talk about. Thus, a model should
give us two pieces of information. First, it should tell us what kind of collection of
entities we can talk about. This is the task of the so called domain , or D for short.
Secondly, a model should give us appropriate semantic entities, built from the items in
D, for the symbols in our language. The function carrying out this task is called the
interpretation function .

What is a Model?

In set theoretic terms, a model M thus is an ordered pair � D 	 F � composed of a domain
D and an interpretation function F specifying semantic values in D.

However this definition hides one problem: Intuitively it doesn’t make much sense
to ask whether or not an arbitrary description is true in an arbitrary situation. Some
descriptions and situations simply don’t belong together. The same is true for the
relation between formulas and models. The model used to evaluate a formula has to
be a model for that formula (or, more precisely, for the language that formula is taken
from). If we examine a formula LOVE � JOHN 	 MARY � , while being provided with a
model recording information only about the symbols HATE, ANNA and PETER, then
it makes no sense at all to evaluate this particular formula in that particular model.
The element connecting a formula with the right models for it is the vocabulary (or a
signature) defining the language of that formula (see Section 1.2.1). So if we want to
evaluate a formula in a model, we have to make sure that the model is a model for the
vocabulary of the language that our formula belongs to.

We say that a given model D 	 F is a model for a vocabulary V if the domain of the
interpretation function F consists of the symbols specified in V . So, according to our
previous considerations, F should assign appropriate semantic entities (built from the
items in D) to the symbols of V .

But what are appropriate semantic values? Given the arity information in V , there’s
no mystery here. Since constants are names, each constant should be interpreted as
an element of D, the domain of the model. That is, for each constant symbol c in the
vocabulary, F � c ��} D. And since n-place relation symbols denote n-place relations,
each n-place relation symbol R should be interpreted as an n-place relation on D. That
is, F � R � should be a set of n-tuples of elements of D.

5.1.2 An Example Model

Let’s look at an example. First, here’s our vocabulary from (page 2) again:

5.1. Basic Semantic Concepts 81

��� MARY 	 JOHN 	 ANNA 	 PETER
�	��
� LOVE 	 2 ��	�� THERAPIST 	 1 ��	�� MORON 	 1 ��
��
We will now build a model for this vocabulary. Let D be � d1 	 d2 	 d3 	 d4
 . This set,
consisting of four items, is the domain of our little model.

Next, we must specify an interpretation function F . Here’s one possibility:

F � MARY ��~ d1
F � ANNA �k~ d2
F � JOHN ��~ d3
F � PETER �k~ d4
F � THERAPIST ��~�� d1 	 d3

F � MORON ��~�� d2 	 d4

F � LOVE ��~��
� d4 	 d2 ��	�� d3 	 d1 ��

Note that every symbol in the vocabulary neatly corresponds to an appropriate semantic
entity:

� The four names correspond to individuals.

� The two arity-1 symbols correspond to subsets of D (that is, properties, or 1-
place relations on D).

� The arity-2 symbol corresponds to a 2-place relation on D.

Intuitively, in this model d1 is called Mary, d2 is called Anna, d3 is called John and
d4 is called Peter. Both Anna and Peter are morons, while both John and Mary are
therapists. Peter loves Anna and John loves Mary. But for example we also know that
sadly, Anna does not love Peter and Mary does not love John.

Given a model of appropriate vocabulary, a formula such as
�

xMORON � x � is either
true or false in that model. To put it more formally, there is a relation called truth
which holds, or does not hold, between sentences (i.e. formulas without free variables,
see Section 1.2.4) and models of the same vocabulary. Now, how to verify if a given
sentence is true in a given model is obvious in most cases (for example, in order to
check the truth of

�
xMORON � x � we simply need to check if every individual in the

model is a moron). What is not so clear is how to give a precise definition of this
relation for arbitrary sentences. This is going to be the problem that the rest of this
section deals with.

5.1.3 Satisfaction, Assignments

We cannot give a direct inductive definition of truth. Truth is a relation that holds be-
tween sentences and models. But the matrix of a quantified sentence typically won’t be
a sentence. For example,

�
xMORON � x � is a sentence, but its matrix MORON � x � is not.

Thus an inductive truth definition given solely in terms of sentences couldn’t explain
why

�
xMORON � x � would be true in a model, for there are no sentential subformulae

for such a definition to refer to.

82 Chapter 5. Inference in Computational Semantics

An indirect Approach

So instead, we’re going to proceed indirectly by defining a three place relation-called
satisfaction-which holds between a formula, a model, and an assignment of values
to variables. Given a model M ~�� D 	 F � , an assignment of values in M to variables
(or more simply, an assignment in M) is a function g from the set of variables to
D. Assignments are a technical aid that tells us what free variables stand for. By
making use of assignment functions, we can inductively interpret arbitrary formulae
in a natural way, which will make it possible for us to define the concept of truth for
sentences.

5.1.4 Interpretations and Variant Assignments

Let’s suppose we’ve fixed our vocabulary. (Note: Whenever we talk of a model M
from now on, we mean a model of this vocabulary, and whenever we talk of formulae,
we mean the formulae built from the symbols in that vocabulary.) We now give two
further technical definitions which will enable us to state the satisfaction definition in
a concise manner.

Interpretations

First, let M ~�� D 	 F � be a model, let g be an assignment of values to variables in M,
and let τ be a term. The interpretation of τ with respect to M and g is F � τ � if τ is a
constant, and g � τ � if τ is a variable. We denote the interpretation of τ by I g

F � τ � .
Variant Assignments

Another concept we need is that of a variant of an assignment of values to variables.
So, let g be an assignment of values to variables in some model, and let x be a variable.
If g � is an assignment of values to variables in the same model, and for all variables y
other than x, g �6� y ��~ g � y � then we say that g � is an x-variant of g. Variant assignments
are the technical tool that allows us to try out new values for a given variable (say x)
while keeping the values assigned to all other variables the same.

5.1.5 The Satisfaction Definition

Having established this, we now are ready to define satisfaction. Let ϕ be a formula, let
M ~�� D 	 F � be a model, and let g be an assignment of values in M to variables. Then
the relation M 	 g � ~ ϕ (ϕ is satisfied in M with respect to the assignment of values to
variables g) is defined inductively as follows:

M 	 g � ~ R � τ1 	�������	 τn � iff � Ig
F � τ1 ��	�������	 Ig

F � τn ����} F � R �
M 	 g � ~�� ϕ iff not M 	 g � ~ ϕ
M 	 g � ~ ϕ � ψ iff M 	 g � ~ ϕ and M 	 g � ~ ψ
M 	 g � ~ ϕ � ψ iff M 	 g � ~ ϕ or M 	 g � ~ ψ
M 	 g � ~ ϕ � ψ iff not M 	 g � ~ ϕ or M 	 g � ~ ψ
M 	 g � ~�� xϕ iff M 	 g � � ~ ϕ 	 for some x-variant g � of g
M 	 g � ~ � xϕ iff M 	 g � � ~ ϕ 	 for all x-variants g � of g

(Here ‘iff’ is shorthand for ‘if and only if’.) Note the crucial - and indeed, intuitive
- role played by the x-variants in the clauses for the quantifiers. For example, what

5.1. Basic Semantic Concepts 83

the clause for the existential quantifier boils down to is this: � xϕ is satisfied in a given
model, with respect to an assignment g, if and only if there is some x-variant g � of g that
satisfies ϕ in the model. That is, we have to try to find some value for x that satisfies ϕ
in the model, while keeping the assignments to all other variables the same.

5.1.6 Truth in a Model

We can now define what it means for a sentence to be true in a model :

A sentence ϕ is true in a model M if and only if for any assignment g of values to
variables in M, we have that:

M 	 g � ~ ϕ

If ϕ is true in M we write:
M � ~ ϕ

This elegant definition of truth beautifully mirrors the special, self-contained nature
of sentences. It’s based on the following observation: It doesn’t matter at all which
variable assignment is used to compute the satisfaction of sentences. Sentences contain
no free variables, so the only free variables we will encounter when evaluating one are
those produced during the process of evaluating its quantified subformulae (if it has
any). But the satisfaction definition tells us what to do with such free variables, namely,
to try out variants of the current assignment and see whether they satisfy the matrix or
not. In short, you may start with whatever assignment you like; the result will be the
same. It is reasonably straightforward to make this informal argument precise, and the
reader is encouraged to do so.

5.1.7 Validities

Our main topic in this chapter is logical inference. Given the semantic concepts just
introduced, we’re now in a position to state precisely what we mean by this. We will
do so in two separate steps. First we’ll establish what valid formulae (or more simply,
validities) are. Then we’ll define the concept of a valid argument (or valid inference).

Valid Formulae

A valid formula is a formula that is satisfied in all models (of the appropriate vocabu-
lary) given any variable assignment. That is, if ϕ is a valid formula, it is impossible to
find a situation in which ϕ would not be satisfied. We indicate that a formula ϕ is valid
by writing � ~ ϕ.

For example: � ~�� MORON � x �
�f� MORON(X) �
In any model, given any variable assignment, one of the two disjuncts must be true
(incidentally in the case at hand, only one can be true), and hence the whole formula
will be satisfied too.

84 Chapter 5. Inference in Computational Semantics

Valid Sentences

Note that for sentences the definition of validity can be rephrased as follows, without
reference to assignments: A valid sentence is a sentence that is true in all models (of
the appropriate vocabulary). That is, it is impossible to falsify a valid sentence. For
example:

� ~ � x � MORON � x ��� THERAPIST � x ����� MORON(MARY) � THERAPIST(MARY)

5.1.8 Valid Arguments

Now, validities are clearly logical in a certain sense; they are descriptions featuring a
cast-iron guarantee of satisfiability. But logic has traditionally appealed to the more
dynamic notion of valid arguments, a movement, or inference , from premises to con-
clusions.

Valid arguments

Suppose ϕ1 	�������	 ϕn, and ψ are a finite collection of first-order formulae. We then call
the argument with premises ϕ1 	�������	 ϕn and conclusion ψ a valid argument if and only
if the following is true for this argument: Whenever all the premises are satisfied in
some model using some variable assignment, then the conclusion is also satisfied in
the same model using the same variable assignment. The notation

ϕ1 	�������	 ϕn � ~ ψ

means that the argument with premises ϕ1 	�������	 ϕn and conclusion ψ is valid.

Terminology

There is an extensive terminology when it comes to talking about valid arguments,
allowing us for example to refer to ψ as a valid inference from the premises ϕ1 	�������	 ϕn,
or to ψ as a logical consequence of ϕ1 	�������	 ϕn.

Note that if the premises and the conclusion are all sentences the definition of valid ar-
guments can be rephrased as follows: an argument is valid if whenever the premises are
true in some model, the conclusion is true as well. The truth of the premises guarantees
the truth of the conclusion.

An Example

Let’s have a look at an example. The argument with premises
�

x � MORON � x �;� THERAPIST � x ���
and MORON(MARY) and the conclusion THERAPIST(MARY) is valid. That is:

�
x � MORON � x ��� THERAPIST � x ����	 MORON(MARY) � ~ THERAPIST(MARY)

The truth of the premises
�

x � MORON � x ��� THERAPIST � x ��� and MORON(MARY) guar-
antees that of the conclusion THERAPIST(MARY) .

As the reader may suspect, there is a connection between the validity of this argument
and the fact that

5.1. Basic Semantic Concepts 85

Deduction Theorem

� ~ � x � MORON � x �=� THERAPIST � x ���
� MORON(MARY) � THERAPIST(MARY) �
The example suggests that with the help of the Boolean connectives � and � we can
convert valid arguments into validities. This is exactly what is stated by the deduction
theorem .

5.1.9 Calculi

Validity and valid arguments are the fundamental logical concepts underlying the no-
tion of inference. Both concepts are semantically defined, that is, they are defined in
terms of models and variable assignments. But from a computational perspective, us-
ing models to actually compute what follows from a sentence is impossible. First of
all, models may be infinite. But even if we restrict ourselves to using finite models,
the fact that the semantic notion of logical consequence (as well as that of validity) is
defined with respect to all models makes computation intractable.

Proof Theory

It is the subject of proof theory to capture the notion of inference in terms of syntax.
This is done by defining a so-called calculus . A calculus is a set of rules that transform
formulas into other formulas by considering only their syntactic structure. This trans-
formation process starts from an input formula. Under certain conditions, a resulting
sequence of rule applications is then regarded as a proof for the input formula. If such
a proof can be generated for a formula F (in a calculus C), F is called provable or a
theorem (in C). One writes � C F (or just � F if it is clear what calculus one is talking
about).

For a calculus to count as a syntactic counterpart of the semantic notion of inference,
provability in that calculus (�) and validity must co-incide. This is shown by establish-
ing two properties of that calculus.

Correctness (provable implies valid) A calculus C is called correct or sound , iff � C B implies� ~ B.

Completeness (valid implies provable) A calculus C is called complete , iff � ~ B implies � C B.

In other words, if a calculus is correct and complete, all formulas that are provable
in it are also valid, and all formulas that are valid are provable. Of course not every
arbitrary set of rules will be a correct and complete calculus - the rules of the calculus
have to be the right ones. But if a calculus is correct and complete, syntactic for-
mula manipulation can totally replace semantic considerations. Calculi may even be
employed in computational implementation: Various automatic theorem provers have
been developed.

In what follows, we will look at a so called tableaux calculus for propositional logic,
which is in fact correct and complete. We will use the calculus to prove valid formulae
and to verify valid arguments, and in the next chapter we will give it an implementation.

86 Chapter 5. Inference in Computational Semantics

5.2 Tableaux Calculi

We have discussed semantic construction methods at some length in earlier chapters.
The next thing we need in order to really do natural language semantics is an appropri-
ate calculus. In this section we will introduce a so-called tableaux calculus. Before we
come to the formal characterization of our tableaux calculus, we will give you a more
intuitive introduction.

5.2.1 Tableaux for Theorem Proving

We would like to show in a systematic manner that a given formula is valid (i.e. a
theorem). If the formula is valid, it must always be true. In order to proof this we
will proceed indirectly: We will try to make our formula false. If this turns out to
be impossible, we know that it is valid. To try out all ways of making our formula
false, we will transform it into a tree structure according to the semantics of its logical
connectives. Such tree structures are known as (semantic) tableaux .

Here’s an example. Let’s try to show that the formula ������Y����7�f������Y���������� is
valid. (In contrast to the formulas we’ve seen so far, this formula belongs to proposi-
tional logic. Propositional logic is a less complex part of first-order logic, where all
non-logical symbols are interpreted as truth values.) We start with only a single node
containing our suspected theorem. As discussed, we will try to make it false. We
indicate this with a superscript � (called a negative sign):

��������Yl�����L������Y������������_�
Signed Formulae

All formulae in our tableaux calculus will be signed in that way with either a x or � ,
instructions that tell us that we have to make a formula true or false, respectively.

So let’s see how we can make our input formula false. It has a negation as its main
connective. Thus we know that it is false iff its unnegated version is true. So, we add a
node (we give it number 1 here) to our tableaux with the respective unnegated formula.
We mark formulae that we have already expanded by � :

��������Yl�����L������Y������������ � �
�

: ����Y������`������Y������7�����
Conjunctive Expansion

Now, look at the formula at node 1. The sign tells us that we have to make this formula
true. We can do so by making both of its conjuncts true. So, we add two new nodes to
our tableaux (we call this a conjunctive expansion):

��������Yl�����L������Y������������ � �
�

: ����Yl�����`������Yl��������� � �
�

: ��Yl���7���
�

: ����Yl���������

5.2. Tableaux Calculi 87

Up to now, we have found out that we make our input formula false iff we make both
(less complex) formulae Y���� and ��Y������ true. You might already see that this is
not possible, but a computer probably won’t. So let us further expand these formulae!

5.2.2 Tableaux for Theorem Proving (continued)

Disjunctive Expansion

We continue our tableaux construction by expanding the formula Y���� . Under what
conditions is this formula true? There are two possibilities: Either Y is true or � is true.
We express this in a tableaux by introducing a branching (we call this a disjunctive
expansion):

��������Yl�����L������Y������������ � �
�

: ����Yl�����`������Yl�����������\�
�

: ��Yl����� � �
�

: ����Yl���������

: Y\� ¡ : ���
On each new branch, we pursue one of the possibilities to make the decomposed for-
mula true. Now there is only one complex formula left to be expanded: ��Ya�¢��� . This
expansion is like the second expansion again: The formula is true if both subformulae
are true. So, we add these formulae conjunctively.

But to which branch should we add the new formulae? The answer is: to both. The
expanded formula occurs on both branches and so both should get to see the result.

��������Yl�����L������Y������������_�(�
�

: ����Yl�����`������Yl�����������\�
�

: ��Yl�������T�
�

: ����Y�������� � �

: Y �
£

: ����Y5���
¤

: ���������

¡ : � �
¥

: ����Y5���
¦

: ���������
This time there are four expansions that we could apply next: We could expand node 6
or 7 on the left branch, or node 8 or 9 on the right one. We choose to expand nodes 6
and 9 next. The expansion of node 6 gives us Y � on the left branch and the expansion
of node 9 gives us � � on the right branch.

88 Chapter 5. Inference in Computational Semantics

��������Yl�����L������Y������������ � �
�

: ����Yl�����`������Yl�����������\�
�

: ��Yl�������T�
�

: ����Y�������� � �

: Y(�
£

: ����Y5���T�
¤

: �����7���
�T§

: YT�
¨

¡ : �G�
¥

: ����Y-���
¦

: �����7���\�
�-�

: �-�
¨

(Signed) Branch Closure

If you look at the tableaux, you will see that after these two expansions we have added
a
¨

to both branches. We use
¨

to mark branches that contain a contradiction (i.e. two
occurrences of the same atom with different signs). For example the left branch of our
tableaux contains the contradiction Y � and Y(� . Such branches are called closed.

This is important because each branch with a contradiction represents a failed attempt
to make the input formula false. So if all branches contain contradictions, there’s no
way to make the input false - exactly what we wanted to know. Since this is the case
in our example, we know that our input formula is always true, i.e. valid. On the
other hand, if one branch had still remained contradiction-free after expanding all of
its complex formulas, that branch would show a way to make the input formula false.
In other words, it would specify a model in which the input formula is false, that is a
model for its negation.

Branches enumerate models

In general, each fully-expanded contradiction-free tableaux branch represents a model.
A model for the negation of the input formula if, as in our example, the input formula
is signed � , and a model for the input formula itself otherwise. (In the first case, the �
must be ‘translated’ into normal negation �). Moreover, all contradiction-free branches
together specify all models of the (negated) input fomula.

Given this, let’s state in terms of models what we’ve shown: Both branches of our
example tableaux contain a contradiction. Therefore we know that there is no model
for the formula ��������� p � q �{�©��� p �ª� q ����� (where we have translated the negative
sign into negation). So ������� p � q �`����� p ��� q ��� is true in all models, that is valid.

5.2.3 Summing up

Let us now sum up what we’ve done in the example with the help of a few more
concise definitions. We’ve decomposed a formula in a tree that represents a set of case

5.2. Tableaux Calculi 89

distinctions for satisfiability, or in other words, a set of candidate models. We started
with an initial tableaux containing only one node with one signed formula.

Tableaux Inference Rules

Then we applied the following tableaux inference rules :

A � B �
T ���g� �

A �
B �

A � B �
T ���g� �

A �s««« B �
� A � T ���¬� �
A �

� A � T ���g�_�
A �

Aα

Aβ α ­~ β
T � ¨ �¨

These inference rules act on tableaux. They have to be read as follows: If the formulae
above the line appear in a tableaux branch, then the branch can be extended by the
formulae or branches below the line. There are two rules for each primary connective
- one for each sign. Additionally, there is a rule that adds the special symbol

¨
to

branches that contain (atomic) contradictions.

We have only given the rules for conjunction and negation. The other connectives can
be defined as usual: A � B ®��¯��� A �P� B � , A ° B ®�� A � B ®���� A �f� B �

Open, Closed, Saturated

We call a tableaux branch closed iff it contains
¨

, and open otherwise. We will call
a tableaux closed, iff all of its branches are closed, and open otherwise. We use the
above tableaux rules with the convention that no occurence of a formula is expanded
more than once. We will call a branch (and also a complete tableaux) saturated if it
is fully expanded, i.e. if no rule can be applied to it sticking to the convention just
introduced.

Termination

This convention helps us ensure that the tableaux construction process always termi-
nates (at least for propositional logic). Our inference rules always eliminate the pri-
mary logical connective from their antecedent (except for T � ¨ �). So, their succedents
always have fewer logical connectives. As a consequence, the tableaux construction
process terminates when all of the connectives are used up. In this case the formulae
on all branches have been reduced to so-called literals and the tableaux is saturated.
Alternatively, branches may be closed (by T � ¨ �) before they’re saturated. Of course
they need not be further expanded in this case either.

Tableaux Proof

We will call a closed tableaux with the signed formula Aα at its root a tableaux refuta-
tion of Aα, and we will call a tableaux refutation of A � a tableaux proof for A.

If a branch is closed, this means that there is no model for the formulae on that branch
taken together; and if a tableaux is closed altogether, this means that there is no model
for the input formula at all. Constructing a tableaux proof for A means performing an
exhaustive search for models that give A the truth value � . If all branches are closed,
this search has failed and so A cannot have the truth value � . Thus A must evaluate
to x in all models, which is just our definition of validity. So a tableaux proof for
A � can be constructed iff A is valid. To formally prove this fact (that is to establish

90 Chapter 5. Inference in Computational Semantics

correctness and completeness of the tableaux-method), one has to make the relation
between branches and models more precise. The reader is referred to the literature to
see how this can be done.

5.2.4 Using Tableaux to test Truth Conditions and Entailments

Let us look at some further examples. To make things more interesting, we will use our
proof method with a fragment of first-order predicate logic that allows us to express
simple natural language sentences without introducing the whole complications of (un-
decidable!) first-order inference. Our fragment uses formulae of first-order logic, but
without variables and quantifiers. This means that it is equivalent to propositional logic
in expressivity: atomic formulae take the role of propositional variables.

We will first prove the implication ‘If Mary loves Bill and John loves Mary then John
loves Mary.’. We do this by exhibiting a tableaux proof of the formula

� LOVE � MARY 	 BILL �
� LOVE � JOHN 	 MARY ��� ° LOVE � JOHN 	 MARY �
which is equivalent to

� ��� LOVE � MARY 	 BILL ��� LOVE � JOHN 	 MARY ���
�f� LOVE � JOHN 	 MARY ���
if we eliminate the defined connective ° . By exhaustively applying the inference rules
above, we arrive at the following tableaux.

� ��� LOVE � MARY 	 BILL �
� LOVE � JOHN 	 MARY �����g� LOVE � JOHN 	 MARY ��� ���� LOVE � MARY 	 BILL �
� LOVE � JOHN 	 MARY ��� � � LOVE � JOHN 	 MARY ������ LOVE � MARY 	 BILL � � LOVE � JOHN 	 MARY ��� �� LOVE � JOHN 	 MARY � �
LOVE � JOHN 	 MARY � �
LOVE � MARY 	 BILL ���
LOVE � JOHN 	 MARY � �¨

This tableaux has only one branch, which is closed. So the whole tableaux is closed
and constitutes a tableaux proof for our implication.

?- Question!

Annotate each of the nodes of the above tableaux with the rule that has been used to
add it.

As a second example let us now look at a variant problem:

1. ‘Mary loves Bill or John loves Mary’ � ~ ‘John loves Mary’

2. � LOVE � MARY 	 BILL � � LOVE � JOHN 	 MARY ����° LOVE � JOHN 	 MARY �
3. �¯������� LOVE � MARY 	 BILL � � � LOVE � JOHN 	 MARY �����f� LOVE � JOHN 	 MARY ���

To prove the entailment (1) we represent it as an implication (2). Recall that the de-
duction theorem allows us to do so. We then eliminate the implication, arriving at
(3).

5.2. Tableaux Calculi 91

Intuitively, (1) does not hold, because in the situation where the antecedent of the
implication is true (i.e. Mary loves Bill), John need not love Mary. If we try to prove
the entailment using our tableaux method, we get:

����������� LOVE � MARY 	 BILL �
�f� LOVE � JOHN 	 MARY �������f� LOVE � JOHN 	 MARY ������������ LOVE � MARY 	 BILL �
�f� LOVE � JOHN 	 MARY �����f� LOVE � JOHN 	 MARY ��� �� LOVE � JOHN 	 MARY ���
LOVE � JOHN 	 MARY � ���� LOVE � MARY 	 BILL ��� LOVE � JOHN 	 MARY �������� LOVE � MARY 	 BILL ���f� LOVE � JOHN 	 MARY ������ LOVE � MARY 	 BILL ���

LOVE � MARY 	 BILL ��� � LOVE � JOHN 	 MARY ���
LOVE � JOHN 	 MARY ���¨

The tableaux we’ve just constructed is saturated (so we cannot expand it any further)
and not closed. In fact, as we’ve already convinced ourselves above, our initial entail-
ment conjecture doesn’t hold, and so there is no tableaux proof for it.

A Model on an Open Branch

But we know more. The open and saturated branch represents a way of giving the
input formula the truth value indicated by the sign, that is, a model for its negation.
Let’s see how. The literals on the open branch of the above tableaux (marked green)
taken together characterize the situation in which the conjectured entailment fails to
hold (namely the situation where Mary loves Bill but John does not love Mary). These
are the ‘minimal requirements’ on a model for the negated input formula.

5.2.5 An Application: Conversational Maxims

Conversational Maxims

Now that we have a computational method for solving inference problems, let’s look
at a case where we can apply it in semantic interpretation. We shall use inference to
check whether a speaker obeys the conversational maxim s in his utterance. The notion
of conversational maxims was introduced by H.P. Grice in 1975 ([9]). He postulates a
set of constraints on discourses, which he formulates as maxims for the speaker. These
maxims characterize discourse as rational cooperative activity. The hearer can assume
that the speaker follows these maxims, and on this assumption can draw inferences to
the intended interpretation of the discourse: Often if one of multiple readings violates
a maxim, then it simply cannot be the the intended one.

Conversational Implicatures

In other cases a violation allows to infer ‘backwards’ to an intention or assumption
on the side of the speaker. Propositions that can be inferred from violations of the
conversational maxims are called conversational implicature s.

Be cooperative!

Grice assumes that participants in a discourse follow a general cooperative principle .
This principle leads to more specific submaxims, falling into one of four categories:

1. Quality Try to make your contribution one that is true.

92 Chapter 5. Inference in Computational Semantics

2. Quantity Make your contribution as informative as is required.

3. Manner Be relevant.

4. Relation Be perspicuous

Generally, Grice’s maxims are viewed as pragmatic in nature. As regards the maxims
of manner and relation, it may indeed not be easy to see how being relevant or be-
ing perspicuous could be defined solely in semantic terms, without reference to more
general factors such as e.g. the intentions, mutual knowledge or the sociolect of speak-
ers/hearers. In contrast, we can get a grip on the first two maxims without having
to tackle all of the complexities of pragmatics, if we use inference techniques on our
semantic representations.

5.2.6 The Maxim of Quality

We now show how we can use inference to check whether an utterance - given some
previous discourse - conforms to the maxims of quantity and quality (or, more pre-
cisely, we show how to detect a lot of cases where it doesn’t). We will formulate
inference tasks that help us decide this question and that we can give to (for instance)
a tableaux prover.

Quality

First, we shall look at the maxim of quality. An utterance must at least be consistent
with the preceding discourse in order to be true. Now this is definitely something we
can decide using a theorem prover.

An Inference Task

Let’s suppose we want to check the consistency of an utterance ϕ (more precisely
the formula representing the meaning of the utterance) with respect to a preceding
(consistent) discourse, which as a first approximation, we take to be the conjunction of
the logical forms of the n sentences uttered so far ψ1 ��������� ψn. How can we do this?

We proceed indirectly: We check whether ψ1 ��������� ψn � ϕ is unsatisfiable. If so, then
we know that ϕ is not consistent with ψ1 ��������� ψn (because we have assumed that the
preceding discourse is consistent, we know that ϕ is to blame for the inconsistency).
Otherwise, we know that ϕ is consistent with ψ1 ��������� ψn.

How can we use our tableaux calculus to find out if ψ1 ��������� ψn � ϕ � ψ is unsatis-
fiable? Up to now, we’ve only seen how to prove theorems. But how can we reduce
inconsistency checks to this task? We just have to look at the negation of the formula
that we want to prove unsatisfiable. If this negation is a theorem, we know that the
unnegated formula is unsatisfiable. So we will take the negation of the conjunction for
the complete discourse (i.e. ��� ψ1 ��������� ψn � ϕ �), and check if it is a theorem. This
theorem-check is where our tableaux-prover comes in. We feed the negated formula��� ψ1 �±������� ψn � ϕ � � to it and try to construct a closed tableaux. If we manage to build
one, we can ‘infer backwards’ a little.

Here is how, step by step:

5.2. Tableaux Calculi 93

1. �¯� ψ1 ��������� ψn � ϕ � is a theorem (this is what we’ve proven on our tableaux).

2. Hence the unnegated ψ1 ��������� ψn � ϕ must be unsatisfiable.

3. This means that the discourse corresponding to ψ1 ��������� ψn � ϕ is inconsistent.

4. But the previous discourse ψ1 ��������� ψn is consistent (by assumption).

5. Hence the inconsistency can be traced back to adding utterance ϕ.

6. Finally, this means that uttering ϕ after having uttered ψ1 ��������� ψn violates the
Maxim of Quality.

Let us look at a (very) small discourse as an example: ‘If Mutz is a Siamese cat, then
Mary likes her. Mutz is a Siamese cat.’. Given this ‘discourse’, we can use our tableaux
calculus to detect that the sentence ‘Mary doesn’t like Mutz’ violates the maxim of
quality. We have to construct a closed tableaux for the following input (since we do
not have any treatment of pronouns, we formalize ‘her’ as if it was ‘Mutz’):

������� SIAMESECAT(MUTZ) ° LIKE(MARY,MUTZ) �(� SIAMESECAT(MUTZ) �L� LIKE(MARY,MUTZ) ��� �
This is equivalent to:

���������¯� SIAMESECAT(MUTZ) �L� LIKE(MARY,MUTZ) ����� SIAMESECAT(MUTZ) �L� LIKE(MARY,MUTZ) ��� �
5.2.7 The Maxim of Quantity

Quantity

Let’s now turn to the maxim of quantity. To be ‘as informative as required’, an utterance
must (most of the time...) at least be informative at all. We can get a grip on this
minimal requirement using inference. The key idea is that an utterance must contain
something new to be informative. And to count as something new logically, the content
of the utterance must not be implied by the preceding discourse anyway. We know that
if it is implied, the implication with the preceding discourse as antecedent and the (not
so) new utterance as consequent will be valid.

The Inference Task

So (again given a preceding discourse ψ1 �l������� ψn) let’s suppose we want to to find
out whether some utterance ϕ is informative. As we said, we check whether

ψ1 ��������� ψn ° ϕ

is valid (that means, whether it is a theorem). In our tableaux calculus, we thus have to
attempt to construct a closed tableaux for the equivalent:

�¯��� ψ1 ��������� ψn ���P� ϕ � �
If we manage to do so, we know that the new utterance is not informative and thus
violates the maxim of quantity. Otherwise, we shall take it to be informative.

94 Chapter 5. Inference in Computational Semantics

?- Discussion!

Give examples of violations of the maxims of quality and quantity that would not be
detected by our approach!

Let us emphasize that Grice’s point is not that utterances violating any of the con-
versational maxims are ill-formed in the sense of ungrammatical strings. Rather, a
speaker may violate a maxim on purpose, allowing the hearer to infer ‘backwards’ to
the speaker’s intention. Can you think of situations where this happens?

?- Discussion!

Our treatment of the informativity constraint is obviously oversimplified in that it
counts to many utterances as violating the maxim of quantity. The problem is that
we assume that all consequences of the complete discourse are always equally present
to a hearer. How could we solve (or at least alleviate) this problem?

5.3 Tableaux Web-Interface

Click here!1

In the next chapter, we will discuss the implementation of our propositional tableaux
calculus just presented. If you want to use the calculus right away, have a look at our
Web-Interface2 . You can either generate tableaux for some given example formulae
or type in formulae yourself (using our familiar Prolog syntax). This might help you
doing your exercises.

Propositional example formulae like the ones we discussed in this chapter can be found
in the choice box Propositional. If you type in examples by hand, don’t care about the
QDepth input field.

Try this!

Take for example the tableaux we have seen in Section 5.2.4 and compare it to the
tableaux our system generates:

love(mary,bill) & love(john,mary) > love(john,mary).

Note that you can feed the formula

love(mary,bill) & love(john,mary) > love(john,mary)

directly to our system. But of course you can also feed the equivalent formula without
defined connectives:

~((love(mary,bill) & love(john,mary)) & ~love(john,mary)).

Don’t forget to choose whether you want to make the formula true or false.

1http://www.coli.uni-saarland.de/projects/milca/cgi-
bin/Tableaux/tableaux.cgi

2http://www.coli.uni-saarland.de/projects/milca/cgi-
bin/Tableaux/tableaux.cgi

6

Tableaux Implemented

In this chapter, we present an implementation of the tableaux algorithm we’ve pre-
sented in the last chapter.

6.1 Implementing PLNQ

Now let’s turn to an implementation of what we’ve learnt. Basically, we only have to
do two things:

1. We have to devise data structures for handling tableaux.

2. We have to represent the tableaux inference rules (page 89) in Prolog.

As regards the first task, our decision is this: We do not represent tableaux explicitely.
Rather, we use Prolog’s backtracking mechanism to ‘crawl along’ the tableaux under
construction. This makes the second task almost trivial - really all we have to do is
translate our inference rules into Prolog. The resulting program is somewhat different
from what you might expect if you think about constructing tableaux with pen and
paper. Nevertheless it’s elegant and easily implemented.

6.1.1 Literals

The recursive predicate tabl/3 implements the core of our tableaux system.

The first argument of tabl/3 is the input formula. In the first call, this is the formula
with which we start our tableaux. The second argument (InBranch) stores the literals
we have derived so far on the branch under construction. In the first call this argument
will just be the empty list [], but we need it as an accumulator in the recursion.

The last argument (OutBranch) of tabl/3 will finally contain the model we’ve con-
structed on some branch (as a list of literals). In this setting, OutBranch will be the
output of our predicate. But for the time being, you can safely ignore this argument
except when we mention it explicitely.

The predicate tabl/3 has six clauses. The base case is for literals, whereas the recus-
rive clauses handle complex formulae. We will first look at the base case. It is the last
clause in the program, after the clauses for the complex formulae, so we can be sure
that its input F is a literal. (Of course to be sure of this, we additionally have to include
cuts in the other clauses to prevent backtracking to the ‘literal case’). Here it is:

96 Chapter 6. Tableaux Implemented

tabl(F,InBranch,OutBranch) :-

OutBranch = [F|InBranch],

\+ clash(OutBranch).

In this clause, we determine whether F is compatible with our input model. We add F to
InBranch, then test if it was compatible. If it was, we return the result (in OutBranch).
Otherwise the clause fails. Remember that InBranch contains all the literals that we
have already derived on the current branch. If the new literal we’re considering con-
tradicts any of these facts, the current branch is closed. So in effect we signal branch
closure by letting the above clause of tabl/3 fail.

The compatibility check we do is actually a negated incompatibility check. It is
done by calling the auxiliary predicate clash/1 on OutBranch (which is equivalent
to InBranch together with the new literal F).

The predicate clash/1 is implemented as follows:

clash(List) :-

member(true(A),List),

member(false(A),List).

In our implementation we simply translate the signs of our calculus (xi²(�) into the
Prolog atoms true respectively false. Our predicate clash/1 looks whether the
list Literals contains the same atomic formula A twice, once signed true and once
signed false.

?- Question!

A simpler clash test would suffice for our purposes (and make the program more effi-
cient). Do you have an idea how to implement one?

6.1.2 Complex Formulae: Negation

See file propTabl.pl.

We now have dealt with the literal case. But we still have to deal with complex for-
mulae. Let us start with the clauses for negation, directly modeled on the rule T ��� � �
(page 89).

tabl(true(~A),InBranch,H) :-

!,tabl(false(A),InBranch,H).

tabl(false(~A),InBranch,H) :-

!,tabl(true(A),InBranch,H).

These clauses are almost self-explaining. They simply strip off the negation symbol
and turn the sign of the formula. The cuts are there to prevent backtracking to the
clause for literals, which would also match.

The recursive call covers the branch of the tableaux below the negated formula. Gen-
erally, all clauses for complex formulae will consist of recursive calls to tabl/3 on the
decomposed input. Failure in one of these calls always means that the corresponding
part of the tableaux is closed. In Section 6.1.5 we illustrate all this by an example.

6.1. Implementing PLNQ 97

6.1.3 Complex Formulae: Conjunctive Expansion

See file propTabl.pl.

We now look at the clause for positive conjunction, which corresponds to the rule
T ���¬� � (page 89). Again, the cut prevents backtracking to the clause for literals.

tabl(true(A & B),InBranch,OutBranch) :-

!,tabl(true(A),InBranch,K),

tabl(true(B),K,OutBranch).

To make a conjunction true, we first make the first conjunct true. Then we take what
model we’ve generated for the first conjunct (contained in K) and use it as input to make
the second conjunct true. Note that here we really need the last argument of tabl/3.

If the second call to tabl/3 succeeds in the end, OutBranch contains all the literals
generated when verifying both the first and second conjunct.

This is related to the way we would normally (with pen and paper) construct a tableaux
as follows: Each one of the two recursive calls to tabl/3 in this clause covers one part
of the branch below the conjunctive formula. If any of these two calls fails, so will the
whole clause containing them. This is correct because both calls cover part of the same
branch, and closure in any of these parts should affect the branch as a whole.

6.1.4 Complex Formulae: Disjunctive Expansion

See file propTabl.pl.

Let’s finally look at conjunctions in a negative context (i.e. disjunctions). Remember
that the rule T ���g� � (page 89) introduces a branching. If we find a negated conjunction,
we have to falsify either the first or the second conjunct. We express this ‘either... or...’
in Prolog by writing two clauses, each of them covering one of the two branches:

tabl(false(A & _),InBranch,H) :-

tabl(false(A),InBranch,H).

tabl(false(_ & B),InBranch,H) :-

!,tabl(false(B),InBranch,H).

In the first clause, tabl/3 is called with the first conjunct (signed false) as input.
If this call succeeds, everything is fine and we get the resulting open OutBranch as
output. Prolog will then simply forget about the second clause (resp. disjunct/branch).
Otherwise (i.e. if the first call fails), Prolog backtracks to the next clause in the pro-
gram, the second clause for negative conjunction. There tabl/3 is called with the
second conjunct as input, generating the resulting OutBranch. This corresponds to the
second branch of the T ���g� � -rule.

Note that this time we put a cut only in the second of the two clauses. The reason
is that we want to allow backtracking from the first clause to the second one. But
of course we still do not want to have backtracking to the clause for literals: If both
of the clauses for the negative conjunction fail, the cut in the second clause prevents
any further backtracking. So this call of tabl/3 fails. This is exactly as it should
be, because in this situation our program has found a contradiction on both branches
opened by the T ���g� � -rule. Hence the whole subtableaux for the negative conjunction
is closed.

98 Chapter 6. Tableaux Implemented

6.1.5 An Example - first Steps

Here comes an example that will help us understand how the clauses of tabl/3 are
related to the construction of a tableaux as we would usually draw it. Let’s take the
formula ����� RUN(JOHN) �a� SLEEP(MARY) ����� SLEEP(MARY) ��� , and suppose we want
to make it false. This should result in a closed one-branch tableaux, containing the
contradiction SLEEP(MARY) � vs. SLEEP(MARY) � . Now let’s see how our program
finds this tableaux.

Computation Tree

We represent Prolog’s computation using a so called computation tree . This tree shows
the sequence of calls that Prolog has to execute in order to prove its main goal (the one
given in the initial call). Each node of a computation tree corresponds to a state of
the computation. Each node contains a stack with the goals that have to be proven at
the corresponding state of the computation. The topmost goal on the stack is always
the one just under consideration at that state. If this goal produces new subgoals,
they replace it on top of the stack in the next state (i.e. at the daughter node in the
computation tree). If a goal succeeds, it is removed, but the resulting instantiations of
variables are kept and used for the goals on the stacks below in the tree, which are still
to be processed.

Computation trees branch whenever there are multiple clauses compatible with a call
(i.e. in the case of a disjunction in the Prolog code). The branchings correspond to
backtracking points in the programm. The computation tree for our running example
does not branch, but we will soon see one that does.

Initial State

We start with an initial tableaux consisting of our input formula only, and a computa-
tion tree with only one node that contains the top goal:³�´�´ RUN(JOHN) µ ³ SLEEP(MARY) ¶5µ ´ SLEEP(MARY) ¶_¶*·¸
tabl(false(¹ ((run(john)& ¹ sleep(mary))& sleep(mary))),[],Out)º

Steps One and Two

In the following step, the negation symbol is stripped off and the sign of the whole
formula is turned from � to x . We don’t show the tableaux and computation tree for
this step. We directly look at the next one, where the conjunction is handled. From now
on, we will abbreviate RUN(JOHN) as P and SLEEP(MARY) as Q. The dotted boxes on
the tableaux indicate how the formulae on the tableaux derive from each other: All
formulae within a box (transitively) derive from the topmost one in that box. So the
tree and tableaux after handling the first conjunction look as follows:

³�´�´ P µ ³ Q ¶5µ Q ¶*·´ P µ ³ Q ¶�µ Q »
P µ ³ Q »

Q »

(0)
¸
tabl(false(¹ ((P& ¹ Q)&Q)),[],Out)º

(1)
¸
tabl(true((P& ¹ Q)&Q),[],Out)º

(2)
¸
tabl(true(P& ¹ Q),[],Out1) tabl(true(Q),Out1,Out)º

6.1. Implementing PLNQ 99

Notice that now for the first time, the stack in our computation tree contains two goals.
This is because we had to handle a conjunction in step (1) and the clause of tabl/3
for conjunction consists of two subgoals, namely the two recursive calls to tabl/3 on
the two conjuncts. The call for the first conjunct is top - Prolog will first consider this
goal.

Looking at the Tableaux

But what does this mean on the side of the tableaux? It means that the tableaux will (for
some time) grow "in the middle": below the formula we’ve added for the first conjunct
(the blue one), but above the one for the second conjunct. Thus the next formulas are
added inside the dotted box around the first conjunct.

6.1.6 An Example - final Step

Let’s now look at the final step of the computation, when the program finds the contra-
diction false(P) vs. true(P) and fails:

100 Chapter 6. Tableaux Implemented

How did we get here?

How did we get here? In step (3), there are three goals on the stack: The top goal from
step (2) has produced two new subgoals, which are now on top. The third goal is the
one that was second in step (2). It remains untouched for the time being. Steps (4) and
(5) merely consist of the obvious recursive calls triggered by the subgoals on the stack.

Literals

In steps (3) and (5), tabl/3 is called on a literal. Therefore these are the steps where
output arguments get instantiated. We’ve indicated this by notating the corresponding
assignments to the right of the stack at the respective nodes. In step (3) Out2 is instan-
tited to [true(P)], and in step (5) Out1 gets determined to [false(Q),true(P)]. If
there were no other goals on the stack in step (5) this would be the output of the whole
computation.

Finding the Contradiction

But there still is the goal that was put on the stack in step (2) (corresponding to the
rightmost conjunct in the original input formula). Finally, in step (6) this goal becomes
top of the stack and is processed. The literal true(Q) is added to the incoming branch
and a clash/1 test is performed (in the computation tree we’ve left out the clash/1-
subgoals that come from tabl/3 calls on literals. You may have noticed this already
at steps (3) and (5)). Because true(Q) contradicts false(Q) on the incoming branch,
there is a clash and the computation fails.

In our example, there are no possibilities for doing anything else now. The fail means
that Prolog answers no, all previous instantiations are undone and the variable for the
outgoing model of our top level call (Out) remains undetermined. This reflects the fact
that the tableaux for our input formula has only one branch, and that this one branch is
closed, i.e. contains no model.

But next, we’ll look at a case where there is an alternative branch that remains open.
We’ll have a branching computation tree there, and Prolog’s fail will trigger back-
tracking.

6.1.7 Another Example

Suppose we are falsifying the formula:

������� RUN(JOHN) �L� SLEEP(MARY) ���a� SLEEP(MARY) �������L��� CUSTOMER(MARY) � CUSTOMER(JOHN) �
We will abbreviate this formula as �¯��� P �±� Q ��� Q ���±�¯� R � S � . Notice that the main
connective of this formula is a conjunction and the first conjunct is exactly the same
formula as in the last example. Expanding this conjunction (under negative polarity -
we said that we want to falsify the formula) leads to the following branching tableaux
and computation tree:

A Branching

6.1. Implementing PLNQ 101

See file propTabl.pl.

The tableaux has two branches according to our rule T ���g� � . The left one is exactly
as in our last example and will end up closed. The computation tree also branches,
and here again the left branch is as in our last example and will end in a fail. But
why does the computation tree branch? Look at the clauses of tabl/3: There are two
clauses that match for a negative conjunction. One leads to a recursive call on the left
subformula, the other to a recursive call on the right one. The two branches of the
computation tree correspond to these two matching clauses.

Backtracking and Computation Trees

The branches of the computation tree are visited from left to right. After a while the
fail on the left branch is reached (i.e. the left branch of our tableaux closes). As we
know, fail triggers backtracking. On our computation tree, this means that Prolog
goes upward from the fail to the next branching point above, and chooses the next
branch to the right to continue its computation. The branch to the left is discarded (and
so are all instantiations that took place below the branching point).

Hence the right conjunct of our original input formula is further expanded, adding to
the right branch of the tableaux. Finally, when the right conjunct is fully broken down
into literals, the top-level output argument Out is instantiated to [true(R), true(S)].

102 Chapter 6. Tableaux Implemented

What is the result?

Now we know that our input formula (page 100) is no theorem. Moreover, we have
generated a (in fact the) counter example in OutBranch: If customer(mary) and
customer(john) are true, the whole input formula is false.

6.1.8 Two Connectives

Notice that we’ve only discussed (and in fact that we’ve only implemented) tableaux
rules for the connectives � and � so far. This made things simpler for us, and as you
probably know it is always possible to treat all other connectives as defined in terms of
these two.

See file comsemLib.pl.

We will now give an implementation of the predicate naonly/2 that takes a formula
which uses the full set of connectives to an equivalent one that uses only � and � . All
we have to do is to replace the defined connectives according to their definitions:

naonly(~(X),~(Z)) :-

!,naonly(X,Z).

naonly(X & Y, Z & W) :-

!,naonly(X,Z),

naonly(Y,W).

naonly(X v Y,~(~(Z) & ~(W))) :-

!,naonly(X,Z),

naonly(Y,W).

6.2. Wrapping it up (Theorem Proving) 103

naonly(X > Y,~(Z & ~(W))) :-

!,naonly(X,Z),

naonly(Y,W).

naonly(X,X) :- !.

We have to use cuts in the first clauses because we don’t want to allow backtracking
to the last one (which always matches). If we didn’t, we would get additional spurious
solutions with only parts of the input formula converted.

6.2 Wrapping it up (Theorem Proving)

The file prop.pl contains a simple driver for theorem proving:

theorem(Formula) :-

naonly(Formula,ConvFormula),

\+ tabl(false(ConvFormula),[],_).

Test it! theorem(walk(john) v (~walk(john))).

All Files

Here’s a summary of the files that make up the implementation we’ve discussed:

See file propTabl.pl. The core of the implementation: tabl/3 and clash/3

See file comsemLib.pl. Auxiliary predicates: naonly/2 and toconj/2

See file prop.pl. The wrapper for model generation and theorem proving: modGen/3 and theorem/1.
See file comsemOperators.pl. Our usual operator definitions

Further Reading

A textbook introduction to formal logics including a discussion of propositional and
first-order tableaux methods is [6].

104 Chapter 6. Tableaux Implemented

Bibliography

[1] Patrick Blackburn and Johan Bos. Representation and Inference for Natu-
ral Language. CSLI Press, 2004. Accepted for publication. See also www.
comsem.org, www.blackburnbos.net, and http://www.loria.
fr/~blackbur/.

[2] Aljoscha Burchardt, Stephan Walter, Alexander Koller, and Manfred Pinkal. The
MiLCA Saarbrücken Project. http://www.coli.uni-saarland.de/
projects/milca/, 2003.

[3] Aljoscha Burchardt, Stephan Walter, and Manfred Pinkal. MiLCA - Distance
Education for Computational Linguistics. Accepted for EDEN 2004 conference,
Budapest, 2004.

[4] Denys Duchier. Oz Documentation DTD. http://www.mozart-oz.org/
documentation/ozdoc/index.html.

[5] Markus Egg, Alexander Koller, and Joachim Niehren. The constraint language
for lambda structures. Journal of Logic, Language, and Information, 10:457–485,
2001.

[6] Melvin Fitting. First-Order Logic and Automated Theorem Proving. Second Edi-
tion. Springer, 1996.

[7] Ruth Fuchss, Alexander Koller, Joachim Niehren, and Stefan Thater. Minimal
recursion semantics as dominance constraints: Translation, evaluation, and anal-
ysis. In Proceedings of the 42nd ACL, Barcelona, 2004.

[8] L. T. F. Gamut. Logic, Language, and Meaning, volume 1: Introduction to Logic.
The University of Chicago Press: Chicago, London, 1991.

[9] H. P. Grice. Logic and conversation. In P. Cole and J. L. Morgan, editors, Syntax
and Semantics: Vol. 3: Speech Acts, pages 41–58. Academic Press, San Diego,
CA, 1975.

[10] W. R. Keller. Nested cooper storage: The proper treatment of quantification in
ordinary noun phrases. In U. Reyle and C. Rohrer, editors, Natural Language
Parsing and Linguistic Theories, pages 432–447. Reidel, Dordrecht, 1988.

[11] Richard Montague. Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven, CT, 1974.

Index

(λ-)bound, 11
(semantic) tableaux, 86
α-conversion, 20
α-equivalent, 19
β-reduction, 12
η-equivalent, 57
λ-abstraction, 11
λ-structure, 52

abstracted over, 11
atomic formula, 4

binding edge, 51, 53
bound variable, 4

calculus, 85
Choice Rule, 64
closed, 89
combinatorial explosion, 45
complete, 85
computationtree, 98
confluence, 14
conjunctiveexpansion, 86
constant symbol, 2
constraint graph, 53
constraintsolving, 50
conversational implicature, 91
conversational maxim, 91
Cooper Storage, 45
cooperative principle, 91
correct, 85

deduction theorem, 85
describe, 54
disjunctive, 87
Distribution Rule, 64
domain, 80
dominanceedge, 53

Enumeration, 60

first-order language, 3
free variable, 4
functional application, 12

inference, 84
initial tableaux, 89
interpretation, 82
interpretation function, 80

Keller Storage, 45

literals, 89

Manner, 92
matrix, 4
meaning representation, 1
model for a vocabulary, 80

name, 2
Nested Cooper Storage, 45
normal dominance constraints, 50
normaldominance constraints, 55
normalization, 64

open, 89

parent normalization, 65
predicate symbol, 3
proof, 85
proof theory, 85
provable, 85

Quality, 91
quantifier store, 45
quantifying in, 43
Quantity, 92

redundancy elimination, 65
Relation, 92
relation symbol, 3
restriction, 15

Satisfiability, 60
saturated, 89
scope, 4, 15
scope ambiguity, 39
semantic construction, 1
sentence, 5
sign, 86
signature, 80

106

INDEX 107

signed, 86
solution, 54
solved form, 62
sound, 85
syncategorematically, 35
syntactic structure, 8

tableaux inferencerules, 89
tableaux proof, 89
tableaux refutation, 89
term, 4
theorem, 85
true in a model, 83

valid, 85
valid argument, 84
valid formula, 83
valid sentence, 84
variant, 82
vocabulary, 80

well-formed formula, 4

x-variant, 82

