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Example of a Multimodal Clarification Strategy

User:
Wizard:
User:
Wizard:

User:
Wizard:
User:
Wizard:

User:
Wizard:
User:

Show me all songs with the title “Believe".
| am searching for titles called “Believe".
OK.

There are too many hints. Do you know the name of
the artist or the album ?

No. Please show me a selection.

I’'m searching for a selection of this title.

Yes. All right.

Should | display all albums from 2004 containing this
title?

Yes. All right.

I’'m showing you the list.

OK. ...[clicks] Show me the song from the selected
album. Play it.



Why Multimodality?

Multimodality helps to reduce:

+ interpretation uncertainty (Orviatt, 2002)

+ the cognitive load of the user (Oriviatt et al., 2004)
The use of multimodality is context dependent:

— safety in the in-car domain

— high number of hints in the data base vs. short term
memory

— type of interpretation uncertainty

— user model @

— etc.



Framework Predicting Multimodal Clarification
000

Summary & Future work
000 000
00000
0000
00000

Outline

Framework
Bootstrapping Reinforcement Learning from WOZ Data

KEA UNIVERSITAT
m S
&Y SAARLANDES



Framework Predicting Multimodal Clarification Summary & Future work
000 000 000

00000

0000

00000

Outline

Framework
Bootstrapping Reinforcement Learning from WOZ Data

Predicting Multimodal Clarification
The Data

Context/Information-State Features
Feature Engineering
Learning Experiments

UNIVERSITAT

SAARLANDES



Framework Predicting Multimodal Clarification Summary & Future work
000 000 000

00000

0000

00000

Outline

Framework
Bootstrapping Reinforcement Learning from WOZ Data

Predicting Multimodal Clarification
The Data
Context/Information-State Features
Feature Engineering
Learning Experiments

Summary & Future work

UNIVERSITAT

SAARLANDES



Framework Predicting Multimodal Clarification
@00

Summary & Future work
000 000
00000
0000
00000

Outline

Framework
Bootstrapping Reinforcement Learning from WOZ Data

KEA UNIVERSITAT
m S
&Y. SAARLANDES



Framework
oeo

Thesis Goals

Overall goal:

We want to learn a clarification strategy which is more
natural, context dependent, and flexible, while
maximising user satisfaction.

Sub-goals

1. Investigate human behaviour given understanding
uncertainties.
— Collect data on possible strategies in WOZ experiment.

2. Learn a strategy that reflects human behaviour depending
on the context.
— “Bootstrap" an initial policy using SL.

3. Optimise that strategy for user satisfaction using RL.
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Questions to answer for generating multimodal
clarification requests (CRs)

First, the DM needs to decide that “there is evidence of
miscommunication” (Gabsdil, 2004). Then, we need to do
generation:
1. Content Selection and Organisation
e What level of (mis-) communication to address?
e What severity to indicate?
2. Multimodal Output Planning:
e Uni- or multimodal generation?

3. Realisation ' B s
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Data Collection: Introducing uncertainties

Wizard * No visual contact

Subject
graphics

synthesized

audio dafa
Several matches

Lexical
in data base

ambiguities

audio data

Typist Typist

also see (Skantze, ITRW 03), (Stuttle, ICSLP 04)
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The Data

24 subjects

6 wizards

70 dialogues, 1772 turns (774 wizard turns), 17076 words
e 152 Clarification Requests (19.6%)

¢ 39.5 % multimodal Clarification Requests

— Can we learn when to generate a multimodal CR in
context? ( graphic-yes  vs. graphic-no )
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Local features

DBmatches : data base matches (numeric)

deletion : deletion rate (numeric)

source : problem source (5-valued)

userSpeechAct : user speech act (3-valued)
templateGenerated : template generated (binary)
delay : delay of user reply (numeric)

@O
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Dialogue History Features

CRhist : number of CRs (numeric)

screenHist  : number screen outputs (numeric)
delHist : average corruption rate (numeric)
dialogueDuration . dialogue duration (numeric)

refHist : number of verbal user references to screen
output (numeric)

clickHist  : number of click events (numeric)

: UNIVERSITAT
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User model features

clickUser : average number of clicks (numeric)
refUser : average number of verbal references (numeric)
delUser : average corruption rate for that user (numeric)

screenUser : average number of screens shown to that
user (numeric)

CRuser : average number of CRs asked to user (numeric)
driving : user driving (binary)
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Discussion

So far:
e Binary classification task: graphic-yes
e 152 training instances
¢ 19 features, some numeric

How to avoid data sparseness ?

vs. graphic-no
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Discretisation Methods

“Global discretisation methods divide all continuous
features into a smaller number of distinct ranges."

e Unsupervised proportional k-interval discretisation (PKI).

e Supervised/Entropy-based discretisation method based on
the Minimal Description Length (MDL) principle.
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Feature Selection Methods

“Feature selection refers to the problem of selecting
an optimum subset of features that are most predictive
of a given outcome."

Searching the feature space:

e forward selection
e backward elimination
Selecting the features:

e Filters:

e Other ML techniques: J4.8
e Correlation-based subset evaluation: CFS
¢ Correlation-based ranking with cut-off

e Wrappers: Selective Bayes
e Self constructed: Subset overlap
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Feature selection on PKI-discretised data (left) and on
MDL-discretised data (right)

- - > o CFS Subset - -
Attrlbute/Rankmg A Evaluation _ \Sf\lecnve Bayes

DBmatches CRHist & Attripuite
/dnration corrupted | Ranking
;R]UUSEF Ea clickHist |
| delUser
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Machine Learners

Baseline:
e Majority baseline (graphic-no ): 45.6 % weighted f-score

¢ 1-rule baseline: 59.8 % weighted f-score
Machine Learners:

¢ Rule Induction: RIPPER

Decision Trees: J4.8

Naive Bayes

Bayesian Network

Maximum Entropy @m



Framework Predicting Multimodal Clarification Summary & Future work

[e]e] Jele]
Results

Feature transforma- 1-rule Rule In- Decision maxEnt NB Bnet Average
tion/ w. f-score (%) baseline duction Tree
raw data 59.8 76.1 79.0 76.2 78.5 78.5 74.68
PKI + all features 64.4 72.9 81.6 73.2 81.6 76.4 75.02
PKI+ CFS subset 64.4 75.6 76.3 81.6 81.9%** 82.7*+* 77.08
PKI+ decision tree 64.4 73.8 74.8 81.0 78.9 81.4 75.72
PKI+ selective Bayes 64.4 69.2 74.1 77.9 83.4%** 80.0 74.86
PKI+ subset overlap 64.4 76.3 78.5 81.5 83.6%** 84.3%** 78.10
MDL + all features 69.3 76.9 76.9 79.7 80.4 79.8 77.17
MDL + CFS subset 69.9 76.3 77.2 80.6 81.1 79.8 77.58
MDL + decision tree 75.5 815 83.4%+* 83.4%** 83.1%+* 84.0*+* 81.82
MDL + select. Bayes 75.5 82.8*+* 83.4 **+ 83.7%* 84, 1%+ 84.1%+* 82.27
MDL + overlap 75.5 82.8%** 83.6%** 83.6™** 84,1+ 84,1+ 82.28
average 67.95 76.75 78.22 80.78 81.77 81.85

@, UNIVERSTTAT
i) oes
Y \egs” SAARLANDES



Predicting Multimodal Clarification

[ee]e] o]

Conclusions

Only the “right" combination of ML model,
discretisation method, and feature selection
algorithm shows a significant improvement over
the 1-rule baseline.

best performing combinations: Bayesian models with
wrapper methods (w. f-score of 84.1%, 58% reduction in
error rate)

MDL discretisation better than PKI.
‘vertical’ differences bigger than ‘horizontal’
best performing feature selection method: subset

best performing feature subset: templateGenerated,

screenHist, screenUser
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Discussion: Best performing feature subset

Predictive features:
+ templateGenerated
+ screenHist

+ screenUser

— Other studies (using RL for feature selection) found
repeated concept to be important

Less predictive features:
— refUser

— deletion

— DBmatches @'ﬁiﬂiﬁl
— source

— These (local) features might contribute for a larger data set!
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Summary

Framework: “Bootstrap” a RL-based system

Data collection in a WoZ study.

Initial strategy learning for when to generate multimodal
CRs: 84.1% w. f-score (24.4% improvement over 1-rule
baseline)

Feature engineering as essential step using a large feature
space with little data to achieve significant performance
gains

Wizards’ behaviour is learnable but is considered t%e
sub-optimal. D&
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Future work

(Near) future work: Richer annotations

e Add reward level annotations for RL.

e Estimate transition probabilities for MDP for other action
decisions (e.g. severity, grounding level).

(Distant) future work:

e Evaluate learnt policy against a hand written strategy.
¢ Test the portabilty to other domains.
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Papers associated with this talk:

¢ Verena Rieser and Oliver Lemon. Learning Multimodal
Clarification Strategies: optimizing ISU-based dialogue
management from a limited WoZ data-set . Submitted.

e Verena Rieser, lvana Kruijff-Korbayova, Oliver Lemon.
Towards Learning Multimodal Clarification Strategies
In: 7th ICMI, Doctoral Spotlight, 2005.

e Verena Rieser, lvana Kruijff-Korbayova, Oliver Lemon: A
Framework for Learning Multimodal Clarification
Strategies . Proceedings of 6th SiGdial, 2005.
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Appendix

Weighted f-score

“F-score which says something about recall and
precision w.r.t. class frequencies in the data.”

IC|

wf = ZW,f(C,)
1=1

¢ Weight the f-score of each class by the class frequency in
the data;

e Create the sum .
RO



Appendix

Rich Data Annotation

e Features: Annotation standards for multimodal dialogue
context: Joint TALK/AMI workshop, Dec 12th 2005
http://homepages.inf.ed.ac.uk/olemon/standards-workshop-cfp2.html

e Method: NXT format and the NITE XML toolkit (Carletta,
2005)
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NXT Format

il icono- | | kineto-
graphic | | graphic
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NITE toolkit reference coder
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NITE toolkit gesture coder
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NITE toolkit dialogue act coder
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The End

Thank you for your attention!
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