
Utool: The Swiss Army Knife of Underspecification

Version 3.1

Alexander Koller∗ and Stefan Thater
SFB 378, Project CHORUS

Saarland University, Saarbrücken, Germany
{koller|stth}@coli.uni-sb.de

November 14, 2006

Contents

1 Introduction 3

2 A tutorial walkthrough 4

2.1 Installation . 4

2.2 The Underspecification Workbench . 5

2.3 Running Utool from the command line . 10

2.4 The Utool Server . 13

3 Using Utool 13

3.1 Command-line interface . 14

3.2 Server mode . 14

3.3 Passing USRs . 16

3.4 Exit codes . 16

3.5 The commands supported by Utool . 17

3.6 Pseudo-commands . 24

3.7 Advanced options . 24
∗Currently at Columbia University.

1

{koller|stth}@coli.uni-sb.de

CONTENTS 2

3.8 Options overview . 26

4 Codecs 28

4.1 The domcon-oz codecs . 28

4.2 The domgraph-gxl codecs . 29

4.3 The MRS input codecs . 30

4.4 The holesem-comsem input codec . 33

4.5 The domgraph-udraw and domgraph-dot output codecs 34

4.6 The plugging output codecs . 35

4.7 The term output codecs . 36

4.8 The chain input codec . 37

4.9 Writing your own codecs . 37

5 Utool in Practice 40

5.1 Some practical tips . 41

5.2 Writing your own client for the Utool Server 42

5.3 Integration with the LKB Workbench . 43

5.4 Extracting USRs from a HPSG treebank 44

5.5 Benchmarks . 45

6 Building Utool 47

7 Conclusion 48

1 INTRODUCTION 3

1 Introduction

Over the past fifteen years, underspecification has become the standard approach to deal-
ing with scope ambiguities: Almost every large-scale handcrafted grammar that supports
semantics construction uses it in some form or another. This is primarily because it al-
lows the grammar writer to separate the problem of semantic ambiguity from the problem
of (underspecified) semantics construction: The grammar only derives an underspecified
description of all semantic readings, and the responsibility for actually enumerating the
individual readings is delegated to a later stage of processing. Because the enumeration
process can be delayed until it is actually needed, and readings that contradict our world
and context knowledge could be eliminated by that time, underspecification also has the
potential to speed up processing of ambiguities.

This document describes Utool (the Swiss Army Knife of Underspecification), a tool
that is designed to perform a number of operations that arise when working with under-
specified descriptions (or USRs, underspecified semantic representations). Its main two
functions are to solve an underspecified description (i.e., to enumerate all readings from a
description) and to convert descriptions between different underspecification formalisms
(such as dominance constraints, MRS, and Hole Semantics). In addition, it can perform a
number of smaller tasks, such as deciding solvability, counting readings, and determining
whether a description belongs to a class with specific useful properties.

Utool was developed in the context of the CHORUS project in the SFB (Collaborative
Research Centre) 378 “Ressource-adaptive cognitive processes”, which was funded by
the German Research Organisation (DFG). We developed a version in C++ in 2004-05.
Then we ported release 2.0.1 of the old utool to Java in 2006. The Java version 3.0 is
superior to the C++ system in many respects: It is much cleaner, more portable, easier
to distribute, has more functionality and better error handling, comes with an integrated
GUI, and on some platforms it is even faster. Version 3.1 adds significantly improved
GUI support and various other improvements. Utool requires Java SE 5.0 or higher to
run or compile.

Technically, Utool is a collection of front-ends to a common underlying library for working
with labelled dominance graphs, which can be used independently in other Java programs.
Utool itself comes with three different front-ends: It can be run as a command-line tool;
it can be run in a server mode in which it will accept instructions over a network; and
it can be run as the Underspecification Workbench (Ubench), which offers the complete
functionality of Utool in a convenient GUI. We distribute Utool 3.1 under the Gnu Public
Licence (GPL), although this might change in a future release.

This document is not an introduction to underspecification. We and others have written
many research papers about this topic area, and we cannot do it justice in a system
manual. For an overview, we refer you to the following literature:

1. Blackburn and Bos (2005) give a very readable introduction to underspecification

2 A TUTORIAL WALKTHROUGH 4

in the Hole Semantics framework in their textbook on computational semantics.

2. van Deemter and Peters (1996) gave the first overview of the ideas behind under-
specification and some early formalisms. This book is ten years old, and many
details are now obsolete, but it can still serve as a good starting point.

3. Copestake et al. (1999) introduce Minimal Recursion Semantics, which is used in
the current large-scale HPSG grammars. The paper is interesting because it is
about an underspecification formalism that is in widespread use, and because it
talks a lot about semantics construction in an underspecification context.

4. Egg et al. (2001) define dominance constraints and show how to do semantics con-
struction for it. The dominance graphs Utool works with are based on dominance
constraints, and if you come from a linguistic background, this paper will perhaps
be most helpful for you to get an idea of what dominance constraints do.

5. Koller and Thater (2005) give a (very short) overview of the development of solvers
for dominance constraints and dominance graphs, and point to some recent litera-
ture. Utool implements the chart-based graph solver introduced in that paper.

This document is structured as follows. We will first give a tutorial introduction to
Utool in Section 2. Then we will explain the operations supported by the command-line
and server versions of Utool, and the different ways in which Utool can be called, in
Section 3. Section 4 is devoted to the codecs which make it possible for utool to read and
write underspecified descriptions from different formalisms; it also hints at the theory
behind the conversions and provides pointers to the literature. Section 5 contains some
tips and tricks for using Utool in practice. Finally, Section 6 explains how to recompile
a modified version of Utool, and Section 7 concludes.

2 A tutorial walkthrough

Welcome to the Utool tutorial! In this tutorial, we will walk you through some of the
basic operations that Utool supports.

2.1 Installation

Utool is distributed as a Java package with the filename Utool-<version>.jar. After
downloading it from the website, you can simply run it as follows:1

$ java -jar Utool-3.1.jar

1We write “$ command” for commands that you type on a shell; everything else is the output of the
system.

2 A TUTORIAL WALKTHROUGH 5

Usage: java -jar Utool.jar <subcommand> [options] [args]
Type ‘utool help <subcommand>’ for help on a specific subcommand.
Type ‘utool --help-options’ for a list of global options.
Type ‘utool --display-codecs’ for a list of supported codecs.

Available subcommands:
solve Solve an underspecified description.
solvable Check solvability without enumerating solutions.
convert Convert underspecified description from one format to another.
classify Check whether a description belongs to special classes.
display Start the Underspecification Workbench GUI.
server Start Utool in server mode.
help Display help on a command.

Utool is the Swiss Army Knife of Underspecification (Java version).
For more information, see www.coli.uni-sb.de/projects/chorus/utool/

This assumes that you have installed Java 5.0 or higher and it is in your path. You can
move the Jar to any directory you like and then pass the pathname of the file to Java.
You could also define an shell alias for calling Utool more conveniently if you like, e.g.
as follows (on a bash shell):

$ alias utool=’java -jar /usr/local/Utool-3.1.jar’
$ utool
Usage: java -jar Utool.jar <subcommand> [options] [args]
Type ‘utool help <subcommand>’ for help on a specific subcommand.
Type ‘utool --help-options’ for a list of global options.
Type ‘utool --display-codecs’ for a list of supported codecs.
...

For the rest of this tutorial, we will only write utool for the call to the Utool main
program, for easier readability. You can either define the alias, or expand utool to the
appropriate java -jar Utool-3.1.jar call yourself.

2.2 The Underspecification Workbench

The most convenient way to work with Utool is via Ubench, the Underspecification
Workbench. This is a GUI that will visualise USRs for you and offers access to almost
the entire functionality of Utool.

2 A TUTORIAL WALKTHROUGH 6

2.2.1 Opening examples

You can start Ubench like so:

$ utool display

This will open a window that looks as follows:

Now let’s have a look at an example. Utool comes with a number of built-in examples,
which you can access from Ubench via the File/Open Example menu. So go to this
menu, and load the example holesemantics-14.hs.pl. This is a Hole Semantics USR
for the sentence “Every man in a restaurant knows a woman with a car”, in the Prolog
format used in the Blackburn and Bos textbook (Blackburn and Bos 2005). Ubench will
internally convert this USR into a labelled dominance graph and then draw it as follows:

The window displays some interesting information below the dominance graph. In the
lower right corner, you will see the letters “N c L H”. These letters express the membership
of the graph in a number of graph classes: If you mouse-over the letters, you will see that
the graph is normal, compactifiable, leaf-labelled, and hypernormally connected. (These

2 A TUTORIAL WALKTHROUGH 7

notions are explained e.g. in Koller 2004.) This is nice but unsurprising: The translations
from Hole Semantics and MRS require the resulting dominance graph to be leaf-labelled
and hypernormally connected, because these are formal prerequisites of the correctness
of the translations. If the USR hadn’t been of this form, Ubench would have refused to
translate it and displayed an error message.

2.2.2 Solving dominance graphs

In addition, the status bar claims that this dominance graph has 14 solved forms. A
solved form is an arrangement of the tree fragments (the subgraphs that are connected
by solid edges) into a forest, in such a way that if there is a path from node u to node v
in the dominance graph (via any kinds of edges), there is still a path from u to v in the
solved form. You can look at them by clicking on the “Solve” button in the lower left.
The result will look as follows:

As you can see, Ubench opened a new tab “holesemantics-14.hs.pl SF #1”, which displays
the first solved form of the graph. In linguistic terms, the solved form represents one of
the scope readings, in which the different quantifiers have been assigned one particular
scoping. You can see that the solved form may still contain (dotted) dominance edges.
But because the original graph was hypernormally connected, you can imagine that they
can all be removed and the result is a tree that only consists of tree edges and represents
a formula of first-order predicate logic. In technical terms, this is a configuration of the
original graph; again, see e.g. Koller (2004) for details.

Notice that the status bar of a solved form is different than that of an unsolved dominance
graph: It now displays the index of the solved form among all solved forms of this graph,
and arrows for moving back and forth between the different solved forms. Go ahead and
look at some solved forms.

2 A TUTORIAL WALKTHROUGH 8

2.2.3 Exporting graphs and solved forms

As we have said above, Utool works internally with labelled dominance graphs. It uses
modules called input codecs to map string representations of USRs in some formalism into
labelled dominance graphs. When you opened the example holesemantics-14.hs.pl
earlier, Ubench recognised that the filename extension .hs.pl is associated with the
holesem-comsem input codec, and used this codec to translate the contents of the file
into the graph it displayed for you (Koller et al. 2003). Utool is distributed with a number
of different input codecs. Some of these (e.g. the ones that deal with various concrete
syntaxes of dominance graphs) are rather trivial, whereas others (e.g. the MRS input
codecs) are quite sophisticated and needed to be proved correct (Fuchss et al. 2004).

Utool also comes with several output codecs, which solve the converse task of computing
a string representation for a labelled dominance graph. Let’s have a look at these for
a moment. Go back to the “holesemantics-14.hs.pl” tab, and choose File/Export from
the menu. If you open the “file format” dropdown menu, you will see the list of output
codecs that Ubench is aware of. One thing you can try here is to select the domgraph-dot
output codec, which exports the current dominance graph in the “dot” graph format.
Then you can use a graph-drawing tool that can deal with dot files, such as Graphviz,
to visualise the graph.

Alternatively, you can make Ubench write all solved forms of the current dominance
graph into a file. Choose File/Export Solved Forms from the menu and choose, for
instance, the term-prolog output codec. This will save all solved forms of the graph as
a list of Prolog terms, as they would e.g. be computed by the Blackburn and Bos USR
solver.

You can display a list of all installed codecs by selecting Help/Show All Codecs in the
Ubench menu, or by calling utool --display-codecs on the command line. You can
also extend Utool/Ubench quite easily by implementing your own codecs. This is de-
scribed in more detail in Section 4.

2.2.4 Redundancy elimination

Let’s finish off the Ubench section of this tutorial with a more advanced operation. Utool
is able to modify an underspecified representation in such a way that readings are removed
if they are equivalent to some other reading that is still described by the USR. This can
be very useful in practice. Consider the following sentence (this is Sentence 1262 from
the Rondane Corpus):

(1) For travellers going to Finnmark there is a bus service from Oslo to Alta through
Sweden.

2 A TUTORIAL WALKTHROUGH 9

According to the English Resource Grammar (ERG; Copestake and Flickinger 2000),
this sentence has got 3960 scope readings. However, this ambiguity only comes from the
fact that the ERG analyses proper names as potentially scope-bearing quantifiers, and
the only difference between the different readings is the relative scope of these proper-
name “quantifiers”. More generally, we can say that all readings of the sentence are
semantically equivalent, and it would be desirable to remove 3959 of these equivalent
readings and retain only a single representative. And while the redundancy in this
particular example comes only from spurious scope ambiguities between proper names,
the problem of reducing the number of logically equivalent reading is not restricted to
them and also covers ambiguities between e.g. different existential quantifiers or different
universal quantifiers.

Utool implements a redundancy elimination algorithm, which will modify a USR in such
a way that readings that are semantically equivalent to remaining readings are deleted.
It does this without ever enumerating readings, and is thus very efficient (Koller and
Thater 2006). At the same time, it is very effective: It reduces the median number of
readings on the Rondane Treebank from 55 to 4. Let’s try it out.

The first thing you will need is a file that defines equivalences. One such file is distributed
with Utool. In order to access it, unpack the Utool Jar file by typing the following
command in some directory:

$ jar xf Utool-3.1.jar

This will create, among many others, a file erg-examples.xml in the directory examples.
This file contains an equivalence definition that is appropriate for the Minimal Recursion
Semantics USRs that are computed by the English Resource Grammar (Copestake and
Flickinger 2000). Remember the pathname of this file for now.

Now go back to Ubench and open the example rondane-1262.mrs.pl in Ubench; the
filename extension .mrs.pl is connected to the mrs-prolog input codec, which will read
MRS representations in the Prolog format used by the ERG. As you are already familiar
with, Ubench will translate the USR into a labelled dominance graph and display it.
Select the entry “View/Display Chart” from the menu. This will open a new window
that looks as follows:

2 A TUTORIAL WALKTHROUGH 10

The new windows displays the dominance chart for the dominance graph. The dominance
chart is an internal representation of the set of all solved forms that’s more explicit and
not quite as compact at the dominance graph itself, but still much smaller than the set
of solved forms itself (Koller and Thater 2005 – see also Fig. 4). The chart is interesting
in itself, and you can play with it a bit (try clicking on the different entries to highlight
subgraphs), but for our current purposes, the main point is that it is on the level of
charts that we can do the redundancy elimination. So choose Chart/Reduce Chart
from the menu of the chart window, and select the file erg-examples.xml that you
unpacked from the Jar file earlier. After a moment, most entries will have been deleted
from the chart, and the status bar will say that the (smaller) chart represents only a
single solved form, rather than the 3960 solved forms that the original chart represented.
You can click on the “solve” button to display this single solved form. As you can
see, Ubench just modified a USR in order to represent a much smaller set of readings,
and it did this without computing the individual readings. From our perspective, this
ability to eliminate irrelevant readings that were technically predicted by the grammar
but not intended in the particular situation is the main reason why underspecification is
important.

If you find that you’re working with redundancy elimination a lot, and you’re using
the same equivalence files repeatedly, you can set a global equivalence file in the Solver
menu. You can then use it conveniently from every chart window by using the menu
entry “Reduce with global equivalence system”.

2.3 Running Utool from the command line

All the functionality that you have just explored from the GUI is also available on the
command line. By way of example, let’s solve the example file chain3.clls, which comes
with Utool. This is the pure chain of length 3 ; it is shown in Fig. 1), and you can also
look at it via Ubench. This graph is solvable, and has five solved forms.

2 A TUTORIAL WALKTHROUGH 11

f1 f2 f3

a0 a1 a2 a3

f1

f2

f3

a0 a1 a2 a3

a3
f1

f2
f3

a0 a1 a2

Figure 1: The chain of length 3 (left), along with one of its five solved forms (middle)
and one of its configurations (right).

In order to enumerate the solved forms of chain3.clls, you can call Utool as follows:

$ utool solve -O term-prolog ex:chain3.clls
f1(a0,f2(a1,f3(a2,a3)))
f1(a0,f3(f2(a1,a2),a3))
f2(f1(a0,a1),f3(a2,a3))
f3(f2(f1(a0,a1),a2),a3)
f3(f1(a0,f2(a1,a2)),a3)

As you can see, the Utool command line consists of four parts:

• utool (or java -jar Utool-3.1.jar): This instructs Java to load the Jar file and
run its main class. You can pass further arguments to the Java VM by putting
them before the -jar option.

• solve: This is the command that Utool should execute. In the example, we have
run the solve command, which enumerates all solved forms of the USR and prints
them. There are six other commands – solvable, convert, classify, display,
server, and help – which perform different tasks. They are described in detail in
Section 3.

• -O term-prolog: After the command, you can specify options. The option
-O term-prolog (or, equivalently, --output-codec term-prolog) specifies that
the solve command should encode the solved forms using the term-prolog out-
put codec. You could have specified the input codec with the -I or --input-codec
option, but Utool already inferred that it should use the input codec domcon-oz
from the filename extension .clls.

• ex:chain3.clls: Finally, you can specify where the input USR should come from.
In this example, we have used ex:chain3.clls. This tells Utool that it should look
inside its Jar file for a resource with the name examples/chain3.clls and read
the USR from there. Alternatively, you can specify an ordinary filename here, and
Utool will read the input USR from your file system. You can also pass a hyphen
(-) for this argument to make Utool read its input from standard input.

2 A TUTORIAL WALKTHROUGH 12

Some USRs have a lot of readings, and you either don’t want to see them all, or it takes
too long to enumerate them, but are still curious about how many readings the USR has.
This is what the solvable command is for. You run it as follows:

$ utool solvable -s ex:thatwould.clls
The input graph is normal.
The input graph is not compact, but I will compactify it for you.

Solving graph ... it is solvable.
Splits in chart: 650
Time to build chart: 105 ms
Number of solved forms: 64764

As you can see, we have now instructed Utool to run the solvable command on
the input USR ex:thatwould.clls. In addition, we have specified the -s (or
--display-statistics) option to get more informative output. Notice that we didn’t
have to specify an output codec, because solvable doesn’t output USRs or readings.

Utool has computed a dominance chart with 650 entries and established that this chart
represents a set of 64764 solved forms. However, it has not actually computed the solved
forms themselves. (This is what solve would have done after computing the chart.) It
has also set an exit code of 1 because the graph is solvable (has solved forms), so if you
are using a bash shell, you can do the following immediately after the utool call:

$ echo $?
1

If you want to give your computer a challenge, we encourage you to run solvable on
the input ex:rondane-650.mrs.pl, an MRS USR representing more than two trillion
readings. You will have to increase Java’s memory limit by passing it the option -Xmx512m
to avoid “out of memory” errors.

Two further Utool commands are convert and classify, which allow you to convert
USRs into other formalisms (comparable to opening a USR and then exporting it using
a different codec in Ubench) and to determine their membership in various graph classes
(a more sophisticated version of Ubench’s “N C L H” display in the status bar). We will
not cover these commands in this tutorial. However, it is worth pointing out that you
can always get help on the command-line usage of Ubench using the help command:

$ utool help

will display an overview of possible commands, whereas

3 USING UTOOL 13

$ utool help solve

will display help on how to use the solve command (and similarly for the other com-
mands).

2.4 The Utool Server

The third way of running Utool is in a server mode. In server mode, Utool keeps running
indefinitely; it accepts commands via a socket, executes these commands, and sends the
results back through the socket. You can start Utool in server mode from Ubench by
clicking on the server icon in the top right corner, or from the command line as follows:

$ utool server

This will open a socket on port 2802 of your machine and listen to commands sent to this
port. If you have Perl installed on your system, you can test the Utool Server using the
demo client we have included in the distribution. Keep the Utool server process running,
change to the directory where you unpacked the Jar earlier, and execute the following
command:

$ perl tools/client/utool-client.pl solve -I domcon-oz -O term-prolog \
examples/chain3.clls

f1(a0,f2(a1,f3(a2,a3)))
f1(a0,f3(f2(a1,a2),a3))
f2(f1(a0,a1),f3(a2,a3))
f3(f2(f1(a0,a1),a2),a3)
f3(f1(a0,f2(a1,a2)),a3)

The server supports exactly the same commands as the command-line version (except
that you can’t use it to start another server). However, it has the advantage that you
need to run only a single process to execute any number of commands, whereas you must
start a new Java process for each new command when you use the command-line tool.
This saves runtime if you need to run a large number of successive commands, such as
when classifying all USRs in a corpus: You don’t have the overhead for starting Java,
and the programme will also become faster over time because the Java system has the
opportunity to just-in-time compile the Java bytecode.

3 Using Utool

As you have seen in the tutorial, the Ubench GUI is rather straightforward to use. The
tutorial has walked you through most of its functionality, and while it is by no means a

3 USING UTOOL 14

complete documentation and there are various other aspects that we have not mentioned,
it is probably enough for you to find your way around the rest by yourself.

However, the command-line and server modes of Utool are less self-explanatory. This
chapter documents how to use them in more detail.

In the current release, Utool supports six commands: solve, solvable, classify,
convert, server, and display. Each of these commands can be used from the command-
line or in the Utool Server (but running the server command in the Utool Server doesn’t
do anything). In addition, Utool supports several auxiliary pseudo-commands, which dis-
play help information.

3.1 Command-line interface

When Utool is run from the command-line, it executes the single command you specify on
the command line and then exits. For instance, the following call executes one solvable
command and outputs some information about it:

$ utool solvable -s examples/chain3.clls

Commands typically require arguments (in the example, the filename chain3.clls of
the USR that we want to solve), and accept certain options (here, the -s option, which
instructs Utool to display statistical information). These arguments and options are
written after the command on the command line.

3.2 Server mode

Alternatively, you can run Utool in server mode. In this mode, it will not execute any
commands at first. Instead, it will accept network connections on a specific socket. Each
time it is sent a command on this socket, it will execute this command, send the results
back over the socket, and then close the socket. But the same Utool process keeps running
and can execute many commands during its lifetime.

You start Utool in server mode by making Utool execute the server command:

$ utool server

Alternatively, you can also click the server button in the top right corner of a Ubench
window to start or stop a server thread. The server doesn’t output anything on the
console on which you started it – unless you specified the --logging command-line option
and no name for the logfile, in which case it will write some information to standard error.

3 USING UTOOL 15

By default, the server will listen for socket connections on port 2802, but the port can
be specified using the --port option. The protocol for communicating with the server is
as follows:

1. The client sends a command in an XML element of the following form:

<utool cmd="..." (more options)>
(arguments of the command)

</utool>

The command, options, and arguments in this XML element correspond to the
command, options, and arguments of a single run of the command-line tool.

2. Once you have transmitted a complete utool element (i.e., after the closing
</utool> tag), the Utool Server processes the command. You may optionally
close your side of the socket using the shutdown function to notify the server that
you’re finished writing, but this is no longer necessary. Notice that you don’t want
to close the socket yet at this point.

3. If the command is executed successfully, the server will respond with a message of
the following form:

<result />

The particular attributes of this element depend on the command, and are described
below. If an error occurred, the response will be a message of the following form
instead:

<error code="..." explanation="..." />

Here the “code” attribute will be a numeric error code, and the “explanation”
attribute will be a plain-text explanation of the error that occurred.

4. The server closes the socket.

If you just use Utool for a single call or experimentation, the command-line mode will
typically be easier to use. However, if you need to process many Utool commands from
a programme, it can be dramatically more efficient to keep a single Utool Server process
running and send the commands to the server (see Section 5.1). We present a demo client
for the Utool Server in Section 5.2.

Notice that you’ll need to use XML character entities when you send your USR to the
server, and conversely decode the result that you get back. See Section 5.1 for some more
hints on this.

3 USING UTOOL 16

3.3 Passing USRs

Most commands require the user to specify an USR that should be processed.

In command-line mode, you pass a specification of the USR as a command-line ar-
gument. If this specification starts with ex:, it is taken to represent one of the
USRs that come bundled with Utool. For instance, when we used the specification
ex:holesemantics-14.hs.pl in the tutorial, this instructed Utool to look for an exam-
ple with the name holesemantics-14.hs.pl in the Jar file.

If the specification doesn’t start with ex:, then it is up to the input codec how to interpret
it. Most codecs take it to be a filename, and will attempt to read the USR from the file
with this name. This is what happens when you unpack the Jar file and then execute
utool solvable examples/chain3.clls. The only codec that is currently distributed
with Utool that interprets its input specification differently is the chain codec, which
interprets the string as the numeric chain length and not as a filename.

In server mode, you can’t pass a filename because the server may run on a different
machine than the client and may not have access to its filesystem. Instead, you pass the
USR directly as an attribute of a usr element that is embedded into the utool element,
like so:

<utool cmd="solvable">
<usr codec="domcon-oz" string="[label(x f(y)) ...]" />

</utool>

The ex: syntax is not available in server mode. Notice that the attribute values must
be valid XML attribute strings. This means that you must replace special characters by
their respective character entities (see also Section 5 for tips on this).

3.4 Exit codes

Each execution of a Utool command returns an exit code. The command-line version of
Utool will return this as the programme exit code, which you can access e.g. in the $?
variable in a Bash shell. The server version will return the exit code in the code attribute
in the responses for many commands (and always when it reports an error).

Exit codes are numbers between 0 and 255. They are split up into ranges with different
meanings as follows:

exit codes meaning
0 – 127 command was executed successfully
128 – 191 an error occurred in the main programme
192 – 223 an error occurred in the input codec
224 – 255 an error occurred in the output codec

3 USING UTOOL 17

The exit codes for successful termination of a command are documented with the com-
mands below. Among the codec error codes, the code 192 is special because it always
signifies a parsing error in the input codec. The codes between 193 and 223 denote se-
mantic errors in the input codec; they and all output codec error codes are documented
with the codecs in Section 4. The error codes for the main programme are as follows:

exit code meaning
128 file I/O error
129 network I/O error
130 Ubench encountered an error while laying out a graph
140 error while configuring an (XML) parser
141 the command you specified was not recognised
142 error while registering a codec
143 error while parsing a builtin example
150 you didn’t specify a USR, but the command requires one
151 you didn’t specify an input codec, and Utool cannot guess it
152 there is no input codec of the name you specified
153 the input graph is not weakly normal or not compactifiable
160 you didn’t specify an output codec, and Utool cannot guess it
161 there is no output codec of the name you specified
162 the specified output codec can’t output multiple USRs
170 error while parsing an equivalence specification

3.5 The commands supported by Utool

We will now go through the six main commands and describe what each command does
and what options it takes.

3.5.1 Solvable

This command converts the input USR into a dominance graph and checks whether this
graph is solvable, i.e. has any solved forms. Linguistically, this corresponds to checking
whether the sentence has any readings (ideally, it should!).

Solvability is determined by computing a dominance chart as described in (Koller and
Thater 2005). This is typically much more efficient than actually solving the graph, i.e.
enumerating its solved forms, because the chart is exponentially smaller than the set
of all solved forms. This command only makes a yes/no decision about solvability and
thus doesn’t have to enumerate all the solved forms; it does, however, compute the total
number of solved forms based on the chart. If you want the individual solved forms, see
the “solve” command below.

3 USING UTOOL 18

Result. In command-line mode, the Utool process will terminate with an exit code of
1 if the graph was solvable. It will terminate with an exit code of 0 if it wasn’t.

In server mode, Utool will send a reply of the following form:

<result solvable=’true’ fragments=’7’ count=’5’ chartsize=’10’ time=’30’ />

The solvable attribute contains the string true if the graph was solvable, and false
otherwise. The other attributes contain statistical information: the number of fragments
of the graph, the number of solved forms, the number of splits in the chart, and the time
in milliseconds it took to compute the chart.

Options. The solvable command can take the following options:

• input-codec: You can specify an input codec for this command. If you don’t do
this, the command-line version (but not the server) will try to guess the appropriate
input codec from the filename extension if possible.

In command-line mode, specify the input codec with the option
--input-codec <codecname> or -I <codecname>. In server mode, specify
it as the codec attribute of the usr element.

• input-codec-options: Some input codecs will accept options. For instance, the
mrs-prolog input codec has an option that tells it whether you want to normalise
the dominance graph it computes from an USR in MRS format. You typically
want this, but you can switch off the normalisation by passing the value none in
the normalisation codec option.

In command-line mode, you can specify input codec options with the option
--input-codec-options <options>, where <options> is a comma-separated list
of option-value pairs. In the example of the MRS codec above, you could pass the
option --input-codec-options normalisation=none to switch off the normali-
sation. In server mode, you can set codec options by passing this comma-separated
option list in the codec-options attribtue of the usr element.

• display-statistics: You can make Utool display more detailed statistics when you
call it on the command-line by passing the --display-statistics or -s option.
All such statistics information will be written to standard error. This will do
nothing in server mode; the server transmits statistical information in any case.

• nochart: If you are only interested in checking solvability of an USR, you can
speed up the answer by passing the --nochart option on the command line. In
server mode, you achieve the same effect by passing true in the nochart attribute
of the main utool element. This will make Utool compute an incomplete chart
which is sufficient for determining solvability, but not for computing the number of
solved forms. As a consequence, Utool will not print or return any statistics about
chart size or number of solved forms.

3 USING UTOOL 19

3.5.2 Solve

This command converts the input USR into a dominance graph, computes the solved
forms of this graph, and outputs them using the given output codec. It computes a
dominance chart, and if the graph was solvable, proceeds to enumerate all solved forms.

Result. In command-line mode, Utool will output all solved forms. By default, it will
write them to standard output, but there is a command-line option for redirecting them
into a file. This command will always terminate with an exit code of 0 if no errors
occurred.

In server mode, Utool will send a reply of the following form:

<result solvable=’true’ fragments=’7’ count=’5’ chartsize=’10’
time-chart=’30’ time-extraction=’100’>

<solution string=’....’ />
<solution string=’....’ />

</result>

The attributes of the result element are as for the solvable command, except that
the runtime is now reported separately for computing the chart and for enumerating
(extracting) the solved forms. The solutions are returned in attributes of solution
elements below the result element. Notice that you may need to resolve XML character
entities that were used in the attribute value strings.

Options. The solve command can take the following options:

• input-codec: see solvable

• input-codec-options: see solvable

• output-codec: You can specify the output codec which should be used to encode
the solved forms. If you don’t specify the output codec explicitly, the command-line
tool will first try to guess the output codec from the output filename if you specify
one. If this doesn’t work, it will try to use the output codec with the same name
as the input codec, if it exists. The server will not make such guesses and expects
you to specify the codec explicitly in any case.

In command-line mode, specify the output codec with the option
--output-codec <codecname> or -O <codecname>. In server mode, specify
it by passing the codec name as the output-codec attribute of the main utool
element.

Notice that the solve command potentially outputs more than one solved form.
This means that the output codec you specify here must support the output of

3 USING UTOOL 20

multiple solved forms. The utool -d command shows you for each output codec
whether it does this.

• output-codec-options: Some output codecs will accept options, in a way that
works exactly the same as for input codecs. You can specify output codec options
on the command line using the option --output-codec-options <options>. In
server mode, you can pass the output codec options in the output-codec-options
attribute of the main utool element.

• output: By default, the command-line tool will write the encoded solved forms to
standard output. You can override this by specifying an output file with the option
--output <filename> or -o <filename>. This option is not applicable in server
mode because it doesn’t write into files anyway.

• no-output: You can instruct Utool not to output the actual solved forms by
specifying the “no-output” option. Utool will still compute all solved forms in this
case, it will simply not output them. This can be useful for runtime measurements.
Specify the option --no-output or -n on the command line. In server mode, you
get this effect if you simply don’t specify any output codec in the utool element.

• display-statistics: see solvable

3.5.3 Convert

This command reads a USR and outputs it again. The point about this operation is
that the input and output codecs may be different. This means that you can use it to
convert USRs from one underspecification formalism to another (to the extent that this
is supported by theory).

Result. In command-line mode, Utool will output the USR using the specified output
codec. By default, it will write it to standard output, but you can again redirect the
output to a file. The command always returns an exit code 0 on successful completion.

In server mode, Utool will send a reply of the following form:

<result usr=’....’ />

The string in the usr attribute is the converted USR. Remember that you may need to
resolve XML character entities that were used in the attribute value strings.

Options. The convert command can take the following options:

• input-codec: see solvable

3 USING UTOOL 21

• input-codec-options: see solvable

• output-codec: see solve, except that convert doesn’t require that the output
codec supports the output of multiple solved forms

• output-codec-options: see solve

• output: see solve

• no-output: see solve

• display-statistics: see solvable

3.5.4 Classify

The classify command checks whether a dominance graph belongs to certain particu-
larly well-behaved classes. It currently recongises the following classes:

• weakly normal : A dominance graph is weakly normal (Bodirsky et al. 2004) if the
tree edges form a forest and all dominance edges go into roots.

• normal : A weakly normal dominance graph is normal (Althaus et al. 2003) if all
dominance edges also start in (unlabelled) holes.

• compact : A weakly normal dominance graph is compact if all fragments have depth
zero or one, i.e. no node has both incoming and outgoing tree edges.

• compactifiable: Many weakly normal graphs that are not compact can nevertheless
be made compact by removing internal nodes and labelled leaves of fragments, and
adding tree edges from the roots to the holes. In particular, all normal graphs
are compactifiable. If a graph is compactifiable, it is guaranteed that there is a
one-to-one correspondence between the solved forms of the compactified graph and
the solved forms of the original graph.

• hypernormally connected: A normal graph is hypernormally connected (Koller et al.
2003; Koller 2004) if each pair of nodes is connected by a simple hypernormal
path, where a hypernormal path is an undirected path that uses no two dominance
edges that are adjacent to the same hole. This graph class is a bit abstract, but
immensely useful because these graphs (a) have a lot of nice structural properties,
and (b) we believe that all graphs that are currently used in underspecification are
or should be hypernormally connected (Fuchss et al. 2004). The translations of
MRS and Hole Semantics into dominance graphs are only defined for USRs that
translate into hypernormally connected graphs because they rely on the structural
properties mentioned in (a).

• leaf-labelled: A weakly normal graph is leaf-labelled (Koller et al. 2003) if every
(unlabelled) hole has an outgoing dominance edge. If a graph is both hypernormally
connected and leaf-labelled, each of its solved forms has a configuration.

3 USING UTOOL 22

Result. The classes to which a graph belongs are encoded as the bit-wise OR of the
following values:

class bit value
weakly normal 1
normal 2
compact 4
compactifiable 8
hypernormally connected 16
leaf-labelled 32

The command-line tool will return this value as its exit code upon successful completion.

The Utool Server will return a message of the following form:

<result code=’63’ weaklynormal=’true’ normal=’true’
compact=’true’ compactifiable=’true’
hypernormallyconnected=’true’ leaflabelled=’true’ />

Here code is the exit code described above, and the other attributes are either true or
false.

Options. The classify command can take the following options:

• input-codec: see solvable

• input-codec-options: see solvable

• display-statistics: see solvable

3.5.5 Server

The server command starts a new Utool Server. By default, this server listens to new
connections on port 2802, but you can specify a different port using the --port option.
This command is ignored if Utool is already running in server mode; it can only be run
from the command line.

Result. This command doesn’t terminate by itself; you have to shut down the server
process by hand. Alternatively, if you have an open Ubench window (by running the
display command), you can shut the server down by clicking on the server button in
the top right corner.

3 USING UTOOL 23

Options. The server command can take the following options:

• port: By default, the server will listen on a socket on port 2802. You can spec-
ify a different port using the option --port <number> (or -p <number>), where
<number> is the port number you want.

• logging: Using this option, you can make the server log information about incom-
ing commands and its responses. If you specify the option --logging (or -l) by
itself, the log messages will be written to standard error. Alternatively, you can
log the messages into a file by specifying the filename: --logging <filename> or
-l <filename>.

• warmup: If you pass the option --warmup to the server, it will solve a number
of dominance graphs before doing anything else. The effect of this is to encourage
the Java Virtual Machine to compile parts of the solver to native machine code, so
when you solve USRs that you are actually interested in, Utool will do this faster
and in a more predictable time. Utool will keep you informed about the warmup
process, and will print the message “Utool is now warmed up” when the warmup
is finished.

3.5.6 Display

The display command instructs Utool to display the input USR in the Underspecifica-
tion Workbench (Ubench). If the Utool process has opened a Ubench window before,
it will display the USR in a new tab of the same window; otherwise it will open a new
Ubench window first.

Unlike the previous commands which accept USRs as input, the input USR argument
is optional in the display command. This means that you may specify an input USR
(in which case it is displayed right away), or you can call display without arguments.
In this case, an empty Ubench window is displayed; you can still open USRs from the
File/Open menu or by sending further display commands to the Utool Server.

Result. This command doesn’t terminate by itself; you have to quit Ubench by choos-
ing the File/Quit menu entry or closing the main window.

Options. The display command can take the following options:

• input-codec: see solvable

• input-codec-options: see solvable

3 USING UTOOL 24

3.6 Pseudo-commands

In addition to the six main commands, the command-line version of Utool will accept a
number of “pseudo-commands”, which display help information. If you call Utool with
a pseudo-command, it executes the pseudo-command and terminates immediately. You
cannot specify both a command and a pseudo-command at the same time.

The following pseudo-commands exist:

• help [command]: If you specify a command, this will display a brief help mes-
sage for that command. Otherwise, it will display an overview over the possible
commands.

• --version: Displays the version of Utool.

• --display-codecs or -d: Displays the installed codecs.

• --help-options: Displays an overview over some frequently used options.

3.7 Advanced options

3.7.1 Redundancy Elimination

One classical challenge when working with scope ambiguities is that structurally different
readings may be logically equivalent. This problem of “spurious ambiguity” is illustrated
by sentences like the following:

(2) A researcher of some company saw a sample of a product.

(3) For travellers going to Finnmark there is a bus service from Oslo to Alta through
Sweden. (Rondane 1262)

(4) We quickly put up the tents in the lee of a small hillside and cook for the first
time in the open. (Rondane 892)

Example (2) is an ambiguous sentence with fourteen different readings, but these read-
ings are all logically equivalent because existential quantifiers in predicate logic can be
permuted with each other without changing the interpretation. Examples (3) and (4) are
sentences from the Rondane Treebank. The English Resource Grammar analyses them
as having 3960 and 480 scope readings, respectively; but the first sentence is intuitively
unambiguous, and the second one has two readings that differ in the relative scope of
“the lee” and “a small hillside”. This surprisingly high number of readings comes from
the fact that the ERG analyses all kinds of noun phrases, including proper names and
pronouns, as scope bearing operators, and many of these don’t in fact take scope. But

3 USING UTOOL 25

the basic problem of spurious ambiguity has haunted semanticists ever since Montague’s
Quantifier Raising analysis.

Utool is able to efficiently eliminate spurious ambiguities to a limited degree. It im-
plements the redundancy elimination algorithm described by Koller and Thater (2006),
which assumes that (logical) equivalence is approximated as equivalence with respect
to a system of term equations. For efficiency reasons, Utool when run as a main pro-
gramme won’t eliminate splits from the chart. Instead, it won’t even add eliminable
splits to the chart in the first place. However, the distribution includes classes for running
a redundancy elimination on the complete chart (see the de.saar.chorus.domgraph.
equivalence package).

In order to make Utool eliminate equivalences in an invocation from the commandline,
you must pass it the --equivalences <equivfile> or -e <equivfile> option. Here
<equivfile> is the name of a file which contains a specification of the equation system.
In server mode, you pass an element <eliminate equations="..." /> as a child of the
utool element, where the value of the equations attribute is the specification of the
equation system.

An equation system specification is an XML document of the following form:

<?xml version="1.0" ?>
<equivalences style="(some name)">

.....
</equivalences>

You may nest two kinds of elements below the root element:

• equivalencegroup: This element specifies a set of label-hole pairs that can all
be permuted with each other. For instance, if you want to specify that existen-
tial quantifier in first-order logic can be permuted with each other, regardless of
whether they are in each other’s scopes or restrictions, you can use the following
specification:

<equivalencegroup>
<quantifier label="exists" hole="0" />
<quantifier label="exists" hole="1" />

</equivalencegroup>

By contrast, universal quantifiers only permute with each other if they are plugged
into each other’s scope:

<equivalencegroup>
<quantifier label="every" hole="1" />

</equivalencegroup>

de.saar.chorus.domgraph.equivalence
de.saar.chorus.domgraph.equivalence

3 USING UTOOL 26

You may have as many equivalencegroup elements as you like, and you may have
as many entries in each equivalencegroup as you like.

• permutesWithEverything: This element expresses that a certain quantifier per-
mutes with every other quantifier. For instance, you can state that a proper name
as analysed by the ERG permutes with every other quantifier as follows:

<permutesWithEverything label="proper_q" hole="1" />

The hole attribute specifies the index of the child that is used in the permutation system,
starting at 0 for the leftmost child. Notice that redundancy elimination is only defined
for compact dominance graphs in (Koller and Thater 2006). Utool automatically keeps
track of the hole indices when it compactifies the input graph, so the compactification is
transparent to the user. However, this translation step is not well-defined in the case of
multiple holes below the same child of the labelled root.

An example equivalence system, which is appropriate for the MRSs generated by the
ERG, and which we used for the evaluation in (Koller and Thater 2006), is part of the
Utool distribution (in examples/erg-equivalences.xml).

3.8 Options overview

We conclude this section with an overview over all options.

• --input-codec <codecname> or -I <codecname>
(Server mode: codec attribute of the usr elements)
(applies to: solvable, solve, classify, convert)

Specify the input codec.

• --input-codec-options <options>
(Server mode: codec-options attribute of the usr elements)
(applies to: solvable, solve, classify, convert)

If the selected input codec accepts options, use this option to specify them.

• --output-codec <codecname> or -O <codecname>
(Server mode: output-codec attribute of the utool element)
(applies to: solve, convert)

Specify the output codec.

• --output-codec-options <options>
(Server mode: output-codec-options attribute of the utool element)

examples/erg-equivalences.xml

3 USING UTOOL 27

(applies to: solve, convert)

If the selected output codec accepts options, use this option to specify them.

• --no-output or -n
(Server mode: assumes this option if no output codec is specified)
(applies to: solve, convert)

Compute the output, but don’t display it (useful for runtime measurements). If
you specify this option, you don’t need to specify the output codec (and if you do,
it is ignored).

• --output <filename> or -o <filename>
(Server mode: not applicable: the server doesn’t write to an output file)
(applies to: solve, convert)

Write the output to the specified file, rather than to standard output. If you use
this option and don’t specify an output codec explicitly, Utool will try to guess the
appropriate output codec from the filename extension.

• --display-statistics or -s
(Server mode: not applicable: the server reports statistics information anyway)
(applies to: solvable, solve, classify, convert)

Display statistics information while executing the command, such as information
about the graph classification, chart size, and runtimes. All statistics information
is written to standard error.

• --equivalences <equivfile> or -e <equivfile>
(Server mode: specify an element of the form <eliminate equations="..." />
as a child of the utool element)
(applies to: solvable, solve)

Run a redundancy elimination algorithm on the chart (see Section 3.7.1).

• --nochart
(Server mode: pass the attribute nochart="true" in the main utool element)
(applies to: solvable)

Don’t compute a complete chart to determine solvability. This is much faster, but
makes it impossible for Utool to count solved forms.

• --warmup
(Server mode: n/a)
(applies to: server)

4 CODECS 28

Warm up the JVM by solving a number of USRs before accepting commands.

4 Codecs

Utool is intended as a “Swiss Army Knife” for working with underspecified representa-
tions, and one of our design goals was therefore to make it compatible with as many
current underspecification formalisms as possible. This is not a trivial task, as different
formalisms typically differ in crucial details, and naive translations from one formalism
to another are typically incorrect for pathological inputs.

As we have explained above, Utool internally works with labelled dominance graphs and
uses codecs to translate between these graphs and the actual USRs that the user sees. An
input codec transforms a USR in a certain format into an equivalent labelled dominance
graph, and an output codec transforms a labelled dominance graph into a USR in a certain
format.

Some codecs are quite simple; for instance, the domcon-gxl codec simply deals with one
particular concrete syntax for labelled dominance graphs. However, there are also input
codecs for MRS and Hole Semantics that do quite a bit of work to compute correct
dominance graphs, and rely on nontrivial formal results; and there are output codecs for
reading the solutions as terms or translating them into graph file formats that can be
displayed using external viewers.

In addition, the Codec API is quite simple, and writing your own codec requires almost
no knowledge of the rest of the Utool system. As long as you observe certain rules that
codecs have to follow, the rest of the Utool system will simply cooperate with your new
codec. In fact, you don’t even have to recompile Utool to make your new codec available
to it – you can simply package your own codec into a Jar file and add it to the classpath
when running Utool.

Below, we will go through the input and output codecs in the current Utool distribution
one by one, explain the formal background and the concrete syntax we assume, and
discuss their limitations. Then we will explain how to write your own codec.

4.1 The domcon-oz codecs

The domcon-oz codecs deal with representations of dominance constraints (Egg et al.
2001) as lists of terms of the Oz programming language. An example USR that these
codecs can deal with looks as follows:

[label(x f(x1)) label(y g(y1)) label(z a) dom(x1 z) dom(y1 z)]

4 CODECS 29

As you can see, USRs are lists of terms whose head symbols are either label or dom.
Each such term stands for an atom of a dominance constraint. The labelling atom
label(x f(x1 ... xn)) (where n ≥ 0) expresses that the node x should have the label
f and its children in a tree that satisfies the constraint should be the nodes x1 to xn,
from left to right. The dominance atom dom(x y) expresses that the node x should be
above the node y in a satisfying tree. In addition, the constraint contains an implicit
inequality atom x 6= y for any two symbols x and y that appear as the first argument of
a label term.

This format was first used in the old CHORUS demo (in 1999 or so), which was written
in Mozart Oz. As we know today, weakly normal dominance constraints can be seen as
dominance graphs quite directly (Koller 2004). If we want to read a domcon-oz USR as
a weakly normal dominance graph, we can read the term label(x f(x1 ... xn)) as
expressing that the node x in the dominance graph has the label f and the children x1
to xn over tree edges. The term dom(x y) then expresses that there is a dominance edge
from x to y.

The domcon-oz input codec considers lines that start with a percent symbol as comments
and ignores them. Both the input and the output codec will deal with arbitrary labelled
dominance graphs, even if they are not weakly normal. These codecs are associated with
the filename extension .clls.

4.2 The domgraph-gxl codecs

The domgraph-gxl codecs deal with representations of a labelled dominance graph in
the GXL graph representation language. GXL (http://www.gupro.de/GXL/) is a XML-
based standard language for this purpose. A USR in this format looks as follows:

<gxl xmlns:xlink="http://www.w3.org/1999/xlink">
<graph id="utool-graph" edgeids="true" hypergraph="false" edgemode="directed">

<node id="x">
<type xlink:href="root" />
<attr name="label"><string>f</string></attr>

</node>
<edge from="x" to="x1" id="edge0">

<type xlink:href="solid" />
</edge>

<node id="x1">
<type xlink:href="hole" />

</node>
<edge from="x1" to="z" id="edge3">

<type xlink:href="dominance" />
</edge>

http://www.gupro.de/GXL/

4 CODECS 30

<node id="z">
<type xlink:href="leaf" />
<attr name="label"><string>a</string></attr>

</node>
</graph>

</gxl>

The USR specifies nodes (using node elements), which can have the type root (a node
with outgoing tree edges), hole (a node with incoming but no outgoing tree edges), or
leaf (a node with not adjacent tree edges). Each node which is not a hole must have an
embedded attr element which specifies its label. In addition, the USR specifies edges,
which can have the types solid or dominance.

The domgraph-gxl codecs are intended primarily as a portable exchange format for la-
belled dominance graphs. Both the input and the output codec will deal with arbitrary
labelled dominance graphs, even if they are not weakly normal. These codecs are associ-
ated with the filename extension .dg.xml.

4.3 The MRS input codecs

Utool supports two input codecs that deal with underspecified representations based upon
Minimal Recursion Semantics (MRS; Copestake et al. 1999), the standard scope under-
specification formalism used in current HPSG grammars. The mrs-prolog codec deals
with MRS expressions in a Prolog style term representation. Alternatively, the mrs-xml
codec deals with MRS expressions based upon an XML-style syntax. Both codecs are
compatible with the concrete syntax that is used in the LKB system (Copestake 2002).

Utool doesn’t contain any MRS output codecs, because MRS makes some specific as-
sumptions about the underlying object language, and it is not clear that a useful class
of labelled dominance graphs can indeed be correctly translated into MRS.

The mrs-prolog input codec. A concrete example of a Prolog style MRS expression
looks as follows:

psoa(h1,e2,
[rel(’prop-or-ques_m’,h1,

[attrval(’ARG0’,e2),
attrval(’MARG’,h3),
attrval(’PSV’,u4),
attrval(’TPC’,u5)]),

rel(’_every_q’,h6,
[attrval(’ARG0’,x7),

4 CODECS 31

attrval(’RSTR’,h9),
attrval(’BODY’,h8)]),

rel(’_dog_n_1’,h10,
[attrval(’ARG0’,x7)]),

rel(’_bark_v_1’,h11,
[attrval(’ARG0’,e2),
attrval(’ARG1’,x7)])],

hcons([qeq(h3,h11), qeq(h9,h10)]))

Here, h1 is the top handle, and e2 an event variable. Terms of the form

rel(L, H, [attrval(F, V), ...])

represent elementary predications, which pair a quoted string L, a handle H, and a list of
feature-value pairs. Features are represented by (quoted) atoms, and values can be either
handles, object language individual or event variables, “unspecified” values (see below)
and quoted strings. Finally, terms of the form qeq(H1, H2) represent handle constraints.
Terms of the form geq(H1, H2) can also be used to express handle constraints.

The codec makes the following assumptions:

• Handles start with a lowercase h followed by a sequence of digits.

• Individual variables start with a lowercase x followed by a sequence of digits.

• Event variables start with a lowercase e followed by a sequence of digits.

The codec also accepts terms starting with lowercase u or i, which correspond to values
left unspecified by the syntax-semantics interface of the grammar used to derive the MRS
expression. These terms are ignored by the input codec.

The codec implements an extended version of the translation of MRS into normal dom-
inance graphs defined by Niehren and Thater (2003). During the translation, the codec
makes certain constraints that are implicit in the MRS description explicit by adding
dominance edges (this is called normalisation). Most importantly, it adds a dominance
edge from each quantifier to its bound variables. We assume that quantifiers are elemen-
tary predications which contain exactly the features ARG0, RSTR and BODY. An individual
variable is treated as bound if it occurs as the value of some other feature.2

In order to guarantee correctness of the translation, the codec makes two important as-
sumptions about the MRS structures is processes. First, the qeq (and geq) constraints
translate simply into dominance edges. This is a conceptional simplification, which how-
ever seems to be compatible with the way modern grammars make use of qeq constraints

2The features PSV and TPC are treated specially, and individual variables occurring as value of these
features are ignored by the codec.

4 CODECS 32

(Fuchss et al. 2004). Second, the translation is restricted to MRS expressions whose
graph satisfies certain structural restrictions: The MRS must be a net, or equivalently, the
resulting dominance graph must be normal, hypernormally connected and leaf-labelled.

If the input MRS is not well-formed (see below) or not a net, the codec reports an error.
The error code is obtained by forming the bitwise OR of 192 and the relevant bits in
the following table. The codec is able to report multiple errors at once, so e.g. if the
input MRS translates into a graph that is neither normal nor leaf-labelled, the error code
would be 201.

code symbolic name meaning
1 NOT_NORMAL resulting graph is not normal
2 NOT_WEAKLY_NORMAL resulting graph is not weakly normal
4 NOT_HYPERNORMALLY_CONNECTED resulting graph is not hypernormally connected
8 NOT_LEAF_LABELLED resulting graph is not leaf-labelled
16 NOT_WELLFORMED the input MRS is not well-formed

An MRS is not well-formed if it violates some (in the widest sense) syntactic constraints,
for instance, if it contains a variable x but no quantifier that binds x. We should note
that this terminology departs from (Copestake et al. 1999)’s terminology: in that paper,
a well-formed MRS must additionally be solvable.

Both MRS codecs have an option normalisation, which can take the values nets (this is
the default case) or none. The option value none makes the codec skip the normalisation
step and the well-formedness tests. This means that the dominance graph will typically
only be a weakly normal and not a normal graph, and the solved forms of the graph will
not necessarily correspond one-to-one to the scopings of the MRS. This means that the
codec translates the USR incorrectly. However, it can sometimes be useful for debugging.

The input codec is associated with the filename extension .mrs.pl.

The mrs-xml input codec. In addition to the Prolog style term representation, Utool
also supports an XML style syntax. Apart from the concrete syntax (XML as opposed to
Prolog terms), the two codecs are exactly the same. The Prolog-style MRS expressions
shown above is represented in XML as follows:

<?xml version="1.0"?>
<mrs>

<var vid="h1"/>
<ep>

<pred>prop-or-ques_m_rel</pred>
<var vid="h1"/>
<fvpair><rargname>ARG0</rargname><var vid="e2"/></fvpair>
<fvpair><rargname>MARG</rargname><var vid="h3"/></fvpair>
<fvpair><rargname>PSV</rargname><var vid="u4"/></fvpair>
<fvpair><rargname>TPC</rargname><var vid="u5"/></fvpair>

4 CODECS 33

</ep>
<ep>

<pred>_every_q_rel</pred>
<var vid="h6"/>
<fvpair><rargname>ARG0</rargname><var vid="x7"/></fvpair>
<fvpair><rargname>RSTR</rargname><var vid="h9"/></fvpair>
<fvpair><rargname>BODY</rargname><var vid="h8"/></fvpair>

</ep>
<ep>

<pred>_dog_n_1_rel</pred>
<var vid="h10"/>
<fvpair><rargname>ARG0</rargname><var vid="x7"/></fvpair>

</ep>
<ep>

<pred>_bark_v_1_rel</pred>
<var vid="h11"/>
<fvpair><rargname>ARG0</rargname><var vid="e2"/></fvpair>
<fvpair><rargname>ARG1</rargname><var vid="x7"/></fvpair>

</ep>
<hcons hreln="qeq">

<hi><var vid="h3"/></hi>
<lo><var vid="h11"/></lo>

</hcons>
<hcons hreln="qeq">

<hi><var vid="h9"/></hi>
<lo><var vid="h10"/></lo>

</hcons>
</mrs>

This codec supports the same normalisation option as mrs-prolog. It is associated
with the filename extension .mrs.xml.

4.4 The holesem-comsem input codec

The holesem-comsem input codec can read USRs of the Hole Semantics formalism. Hole
Semantics (Bos 1996) is a rather popular underspecification formalism because it is con-
ceptually very accessible (underspecify formulas by allowing them to have holes which
can be plugged by other formulas). We assume the concrete syntax used in the Prolog
system that accompanies the Computational Semantics textbook (Blackburn and Bos
2005); that is, it should be possible to use all USRs generated by the book software with
this codec. USRs in this syntax are Prolog terms that look e.g. as follows:

some(A, some(B, some(C, some(X, and(label(A), and(hole(B),

4 CODECS 34

and(label(C), and(some(A, X, B), and(pred1(C,man,X), leq(C,B))))))))))

Here A and C are labels, B is a hole, and X is an object variable of the intended semantic
representation, which will be bound by an existential quantifier. All four symbols are
introduced by the outer some terms. In addition, the term some(A,X,B) expresses that
the formula under the label A is ∃X.B, and the term pred1(C,man,X) expresses that the
formula under the label C is man(X). The term leq(C,B) says that the label C must be
below the hole B.

The codec supports USRs built from the logical symbols hole, label, some, and, or, imp,
not, all, leq, que, eq, pred1, pred2, and arbitrary non-logical symbols. It does not
support the symbols lam and app that are used in intermediate representations during
semantics construction by Blackburn and Bos, as these symbols are beyond the scope
of ordinary Hole Semantics USRs (they don’t relate holes and labels, but entire Hole
Semantics USRs).

This codec makes use of the theoretical result that Hole Semantics USRs that are hy-
pernormally connected and leaf-labelled can be translated into equivalent labelled dom-
inance graphs (Koller et al. 2003). The translation itself is not that complicated, but
the correctness proof is not trivial. The codec checks whether the resulting graph is
normal, leaf-labelled, and hypernormally connected. If it isn’t, the codec reports this as
a semantic error with one of the following exit codes:

code symbolic name meaning
193 ERROR_GRAPH_NOT_NORMAL resulting graph is not normal
194 ERROR_GRAPH_NOT_HNC resulting graph is not hypernormally connected
195 ERROR_GRAPH_NOT_LEAF_LABELLED resulting graph is not leaf-labelled
196 ERROR_MULTIPLE_PARENTS graph has a node with more than one parent

Although every normal, hypernormally connected, and leaf-labelled dominance graph
can in principle be translated back into an equivalent Hole Semantics USR (Koller et al.
2003), there is no corresponding output codec. This is because the concrete syntax
imposes a number of very inconvenient restrictions on the USRs that it can express. For
instance, all nodes that are not holes must have exactly one or two children via tree
edges, and all non-holes whose children are not object-level variables must be labelled
with a connective of predicate logic. This has the consequence that only a tiny minority
of all labelled dominance graphs can actually be encoded given this syntax, which made
the encoding more difficult to implement and debug than we felt it was worth.

The input codec is associated with the filename extension .hs.pl.

4.5 The domgraph-udraw and domgraph-dot output codecs

As an alternative to the display command, one can use utool to convert underspecified
representations into formats which can be further processed by other graph viewers:

4 CODECS 35

1. The domgraph-udraw output-codec outputs a dominance graph in a format
that can be used to display the graph with the uDraw(Graph) tool (formerly
daVinci) from the University of Bremen (http://www.informatik.uni-bremen.
de/uDrawGraph/en/index.html);

2. the domgraph-dot codec outputs a dominance graph in the “dot” format supported
by many graph drawing tools, such as graphviz (http://graphviz.org/).

We don’t describe these output formats in detail here, but you can write the output into
a file and then load it from the respective graph viewers. Note that these commands
will only produce meaningful output if you use them from the convert command, rather
than the solve command, as neither graph format supports the representation of multiple
graphs (i.e. the multiple solved forms computed by solve) at once.

As a further convenience, the domgraph-udraw accepts the codec option pipe. If you
use this codec option, you can directly feed Utool’s output to uDraw(Graph) via a pipe
instead of writing the graph to a file and then opening this file from uDraw(Graph), like
so:

utool convert foo.clls -O domgraph-udraw --output-codec-options pipe=true \
| uDrawGraph -pipe

The domgraph-dot codec accepts the codec option enforceEdgeOrder. If this option is
set to true, the dot representation computed by the codec will contain an instruction
that forces the Dot/Graphviz layout algorithm to respect the left-to-right order of edges
that come out of the same node. This is a good thing where tree edges are concerned,
as their relative order corresponds to e.g. the restriction and scope of a quantifier. How-
ever, because of limitations in the dot format, the ordering constraint will also apply to
dominance edges. This is not only unnecessary (there is no meaningful order between
outgoing dominance edges), but it is also inconvenient, as the graph layout for nontrivial
graphs will typically not be pretty. The enforceEdgeOrder option is thus set to false
by default.

Both codecs are able to encode any labelled dominance graph, even if it is not weakly
normal, thus they never report any semantic errors. The domgraph-udraw codec is asso-
ciated with the filename extension .dg.udg, and the domgraph-dot codec is associated
with the extension .dg.dot.

4.6 The plugging output codecs

The plugging-oz and plugging-lkb output codecs display a dominance graph in solved
form as a list of pairs (hole, root) that specify the dominance edges in the solved form (in
Hole Semantics terminology, this is a plugging). They differ only in the concrete syntax:

http://www.informatik.uni-bremen.de/uDrawGraph/en/index.html
http://www.informatik.uni-bremen.de/uDrawGraph/en/index.html
http://graphviz.org/

4 CODECS 36

• plugging-oz: The output is an Oz list of lists of terms that looks as follows:

[[plug(xr2 y2) plug(xl2 x1) plug(xl1 y0) plug(xr1 y1)]
[plug(xl1 y0) plug(xr1 x2) plug(xr2 y2) plug(xl2 y1)]]

Each list consists of terms of the form plug(x y) which encode the dominance
edges (here: from x to y) in the solved form.

• plugging-lkb: The output is a complex Lisp list that mimicks the output of the
MRS solver in the LKB system. We don’t describe this concrete syntax here.

plugging-oz is intended as a convenient output format if you only want to see the
dominance edges. On the other hand, plugging-lkb is practically relevant because it
displays pluggings in the format that the LKB workbench expects from its own MRS
solver. This means that Utool with the mrs-prolog input codec and the plugging-lkb
output codec can be used as a drop-in replacement for the LKB’s own MRS solver (see
also Section 5.3).

These two codecs are only intended to be run on dominance graphs in solved form.
They will also accept any other dominance graph and will then display its dominance
edges, but this is less meaningful than displaying the dominance edges in a solved form.
The plugging-oz codec is associated with the filename extension .plug.oz, and the
plugging-lkb codec is associated with the extension .lkbplug.lisp.

4.7 The term output codecs

The term-oz and term-prolog output codecs can be used to encode labelled dominance
graphs in simple solved form, i.e. solved forms which are trees and in which each hole
has exactly one outgoing dominance edge. They traverse these trees top-down and print
the ground term that corresponds to the tree structure. Their output looks as follows:

• term-oz: an Oz term of the form

f2(f1(a0 a1) a2)
f1(a0 f2(a1 a2))

• term-prolog: a Prolog term of the form

f2(f1(a0,a1),a2)
f1(a0,f2(a1,a2))

The only difference between the two codecs is that the Prolog codec separates arguments
of a term by commas, whereas the Oz codec separates them with whitespace. These two
codecs are intended as human-readable representations of solved forms.

4 CODECS 37

Both codecs assume that the solved form they encode is simple and leaf-labelled, and will
report an error code of 225 if it isn’t. term-oz is associated with the filename extension
.t.oz, and term-prolog with .t.pl.

4.8 The chain input codec

The chain input codec will generate the pure chain (Koller 2004) of a given length. A
chain is a zig-zag graph consisting of upper and lower fragments that are connected by
dominance edges; the pure chain of length 3 is shown in Fig. 1. Chains appear frequently
as parts of linguistically motivated USRs, and are therefore a nice basis for benchmarking
(e.g. in (Bodirsky et al. 2004)).

The “underspecified descriptions” that this codec expects in server mode are simply
string representations of numbers (such as the string 3). The codec will then generate
the pure chain of this length. When used with the command-line version of Utool, chain
behaves differently than all other codecs discussed so far in that it doesn’t interpret its
argument as a filename, but again directly as the chain length. This means that you can
use a Utool call as follows:

$ utool convert -I chain 3 -O domcon-oz

The codec will report a parsing error (code 192) if the chain length specification isn’t a
number, and a semantic error with code 193 if the number isn’t positive. Because chain
doesn’t read its USRs from files, it is not associated with any filename extension.

4.9 Writing your own codecs

Although Utool comes with a collection of codecs that cover many existing popular
underspecification formalisms, there are some formalisms we don’t support (yet), and we
can expect that other formalisms will be developed in the future. To this end, it may be
helpful for you to write your own codec. We will now describe how this is done. Notice
that you don’t have to rebuild Utool just to add codecs.

Codec classes. A codec is a public, non-abstract class that is derived from one of
the abstract base classes InputCodec (if it is an input codec) or OutputCodec (for an
output codec), both of which belong to the package de.saar.chorus.domgraph.codec.
Codecs are typically not instantiated directly by the programmer. They are registered
in a codec manager (an object of class CodecManager), which has methods for querying
and instantiating codecs. The codec manager separates codecs from the rest of the Utool
system and enforces a uniform interface that makes sure that all components of the
system interact properly with the codecs: Once you have implemented and registered a

de.saar.chorus.domgraph.codec

4 CODECS 38

new codec, it will automatically be usable from the command line, the server, and the
GUI.

The abstract base class InputCodec defines a method decode, which you must imple-
ment when you develop an input codec. The method takes a Reader, a DomGraph,
and a NodeLabels object as arguments. Its job is to read an USR from the Reader,
translate it into a labelled dominance graph, and then change the DomGraph and the
NodeLabels to this graph. If an error occurs during this decoding process, it may throw
an IOException, a ParserException (if the USR was syntactically not well-formed), or
a MalformedDomgraphException (if the USR could not be translated to a dominance
graph for semantic reasons). The Utool exit codes (see Section 3.4) corresponding to
these errors are 128 for the I/O error, 192 for the parse error, and 192 + N for the se-
mantic errors, where N is an integer between 1 and 31 (inclusive) which you can specify
when you construct the exception.

Conversely, the class OutputCodec defines a method encode, which accepts a DomGraph
and a NodeLabels, translates them into your output format, and writes the result to
a Writer. The method may throw IOExceptions and MalformedDomgraphExceptions,
with the same meaning as above. The exit codes available to an output codec are 128
for I/O errors and 224 + N for semantic errors. In addition, the codec must implement
the methods print_header and print_footer, which are called by Utool at the very
beginning and end of the encoding process; the builtin codecs use them to print a version
header at the beginning of the output files. It is a good idea to call flush() on the writer
in the footer method.

If your output codec supports the output of multiple USRs into the same file, it should
be derived from the class MultiOutputCodec, which is itself derived from OutputCodec.
Only MultiOutputCodecs can be used as the output codec of a solve command on the
command line, or the “Export Solved Forms” menu entry in Ubench. MultiOutputCodec
inherits all abstract methods from OutputCodec and adds three more: The meth-
ods print_start_list and print_end_list are called before printing the first solved
form (but after print_header) and after printing the last solved form (but before
print_footer), and print_list_separator is called between any two encode calls
for subsequent solved forms. Notice that print_start_list and print_end_list are
called only for results of solve and “Export Solved Forms”, whereas print_header and
print_footer are called in these cases and also for the convert and “Export” com-
mands.

Annotations. Every codec class must be annotated with a @CodecMetadata annota-
tion. This annotation has two required arguments name and extension, both of which
are of type String. The former specifies the codec’s name; there may be no two input
codecs and no two output codecs of the same name. The latter enables Utool to associate
filenames with codecs: A file whose name ends with the specified extension will be auto-
matically processed with this codec. If you pass an empty string for the extension, your

4 CODECS 39

codec will not be associated with any filename. In addition, you may mark your codec
as experimental by passing the option experimental=true to the metadata annotation.

Thus, a typical declaration of an input codec would look as follows:

@CodecMetadata(name="mrs-prolog", extension=".mrs.pl")
public class MrsInputCodec extends InputCodec {
...

The next requirement is that each codec must declare exactly one codec constructor,
which will be used whenever the codec manager wants to create a new instance of the
codec. If the codec class has exactly one public constructor, this constructor is used
as the codec constructor. (If the class declares no constructors at all, the argumentless
default constructor will do.) On the other hand, if the class declares more than one
public constructor, exactly one of them must be annotated with @CodecConstructor,
and this annotated constructor will be used as the codec constructor.

The codec constructor must not be declared as throwing any checked exceptions. In
addition, each parameter of the codec constructor must have an @CodecOption annota-
tion. This annotation takes a required string argument name, which gives this particular
parameter a public name. It may also take an argument defaultValue, which defines
a default value for when the user doesn’t specify an explicit value. If you specify no
defaultValue, the empty string will be used.

Thus, a typical declaration of a codec constructor would look as follows:

@CodecConstructor
public DomgraphUdrawOutputCodec(@CodecOption(name="pipe", defaultValue="false")

boolean usePipe) {
...

This way of declaring codec constructors and codec options looks a bit complicated at
first sight, but is quite convenient in various respects. For one thing, Utool is aware of the
codec options, and will decode them automatically. If you select the File/Export menu
entry in Ubench and choose the domgraph-udraw input codec, you will be offered a button
“Option”, which will reveal an option selection panel. This panel will contain a checkbox
with the label “pipe”, because your codec constructor has a parameter with name “pipe”
and type boolean; that is, it uses information about the parameter types to offer the user
appropriate input forms. Similarly, the Utool command-line tool will be able to parse an
argument --output-codec-options pipe=true, and the server will likewise deal with
the option; these modes use the parameter types to decode the argument strings into
appropriate values. For this reason, every parameter of the codec constructor must have
one of the following types:

5 UTOOL IN PRACTICE 40

• any primitive datatype except for void and char; these are presented as text fields
or checkboxes (for boolean) in the GUI, and are decoded using the valueOf method
of the respective wrapper class on the command line and in the server;

• any enumeration type; these are presented as dropdown menus in the GUI, and
are decoded by mapping the string representations to the enum values of the same
name;

• the class String.

On the other hand, the way that codecs represent metadata stays out of your way if you
don’t need it. Every codec class must have a @CodecMetadata annotation. But beyond
that, there is no need for a @CodecConstructor annotation if there is a unique public
constructor to begin with; and if the constructor has no parameters, nothing needs to
be annotated with @CodecOption. The latter situation accounts for the majority of the
builtin codecs.

Registration. The final step of the story is to make Utool aware of your new codec.
This is handled by creating a file de/saar/chorus/domgraph/codec/codecclasses.
properties somewhere in your classpath. In this file, you list the fully qualified class-
name(s) of your new codec(s), one per line. Utool will then automatically read this file
and try to register your codecs. If a codec fails to register (typically because an an-
notation was missing), Utool will be terminated with an error message and exit code
142.

For instance, let’s say that you have implemented and compiled a codec class foo.bar.
MyCodec. You would then create a codecclasses.properties file with the following
contents:

foo.bar.MyCodec

Then you would start a MyCodec-enhanced version of Utool as follows:

$ jar cf mycodec.jar foo/bar/MyCodec.class \
de/saar/chorus/domgraph/codec/codecclasses.properties

$ java -cp Utool.jar:mycodec.jar de.saar.chorus.domgraph.utool.Utool -d

5 Utool in Practice

We conclude this manual with some examples for using Utool in practice.

de/saar/chorus/domgraph/codec/codecclasses.properties
de/saar/chorus/domgraph/codec/codecclasses.properties
foo.bar.MyCodec
foo.bar.MyCodec
codecclasses.properties

5 UTOOL IN PRACTICE 41

5.1 Some practical tips

1. Running Utool in server mode. Whenever you want to process a large number of
USRs in batch mode, you should seriously consider running Utool in server mode
by invoking the server command. This will save the considerable startup time for
new Java processes, and allow the Java virtual machine to just-in-time compile the
bytecode for further efficiency.

2. Running Java in server mode. The Sun implementation of the Java VM can run
in either “client” or “server” mode. The client mode is the default, but if you have
a long-running process, the server mode can be significantly more efficient because
it invests more time into just-in-time compilation and optimisations.

For optimum performance of Utool, we recommend that you run the JVM in server
mode by calling it as follows:

$ java -server -jar Utool.jar ...

Because of the increased time for startup and compilation, this works best if you
also run Utool in server mode and send it commands via a socket. If you do, you
can encourage the JVM to JIT-compile the solver by passing the --warmup option
to the server.

3. Memory consumption. The chart that Utool computes for large USRs can grow
to eat up quite a bit of your memory. If it grows larger than the heap limit of
the Java VM, Java will throw an OutOfMemoryError and terminate the process.
For most USRs that you will encounter in practice (including almost all USRs in
the HPSG treebanks), the default limit of 256 MB will be sufficient. However,
for those cases where more memory is needed (e.g. rondane-650.mrs.pl in the
examples directory, which has about 2 · 1012 solved forms), you can allow Java to
use more heap space by calling it with the -Xmx512m option.

4. Character encodings. Utool displays characters using the default character encoding
of the Java process. On most Unix-based systems (Linux and some versions of
MacOS), Java will take its character encoding from the current locale, which you
can set by changing the environment variable LANG (see also man locale). If this is
not possible on your system, you can also change Java’s character encoding directly
by setting the file.encoding property.

For instance, say that the default character encoding of your operating system is
UTF-8, but you want to use Utool to display an USR that uses German umlauts
encoded in Latin-1 (aka ISO-8859-1). You could then either change the locale using
the environment variable, like so:

$ LANG=de_DE.ISO8859-1 utool display some-usr

Alternatively, you could pass the character encoding directly to Java as follows:

5 UTOOL IN PRACTICE 42

$ java -Dfile.encoding=ISO-8859-1 -jar Utool.jar ...

Note that character encodings are only an issue if you want to display underspecified
representations. If you want to solve an USR, or convert it into other formalisms,
then Utool produces outputs based on the same encoding as the input.

Some users have reported problems with displaying USRs that contain Chinese
characters. This is theoretically no problem, but the practice can be a little tricky.
We refer you to the online literature on the topic of using Chinese characters in
Java, but here are two ideas to get you started on troubleshooting: (a) Remember
to inform Java of the character encoding you use, and (b) you must have fonts that
can display Chinese characters and that can be used by Swing, and Java must be
able to find these fonts.

5. XML character entities. The Utool Server takes commands as well-formed XML
strings, so it expects you to encode special characters in the USR as XML character
entities. You are probably familiar with having to replace the ¨ character by "
etc., and performing the inverse replacement when decoding the server’s responses.

A lesser known aspect of this, however, is that XML parsers will ignore whitespace
within attribute values according to the XML specification. In particular, you may
use newline characters within a USR, but these characters will be ignored by the
parser. If the concrete syntax of an input codec requires that there are newlines
(e.g. to terminate a comment line in the domcon-oz codec), you must encode this
newline character as the character entity
.

5.2 Writing your own client for the Utool Server

It often makes sense to run Utool in server mode. In these cases, you will probably want
to implement a client in your own application that communicates with the server. This
is documented in Section 3.2, but here we give you the source code of a minimal client
written in Perl. This script assumes that a Utool Server is running on the local machine
on the standard port 2802. It will read a USR in domcon-oz format from standard input
or a file and send it to the server as the argument of a solve command. It will then wait
for an answer from the server (i.e., a list of solved forms in term-oz format) and print it
to standard out.

use IO::Socket;

read a dominance constraint
$message = join(’’, <>);

open connection
$socket = IO::Socket::INET->new("localhost:2802") or die $!;

5 UTOOL IN PRACTICE 43

and send it to the server
print $socket <<EOF;
<utool cmd=’solve’ output-codec=’term-oz’>

<usr codec=’domcon-oz’ string=’$message’/>
</utool>
EOF

shutdown output side of the socket
$socket->shutdown(1);

print the answer
while (<$socket>) { print }

The key point here is that the client shuts down the side of the socket that is used to send
data from the client to the server. This tells the server that the input is now complete
and it should start processing it.

An extended version of this script (also in Perl) is part of the standard Utool distribution
and can be found in the directory tools/client.

5.3 Integration with the LKB Workbench

Utool can be used as a drop-in replacement for the MRS solver built into the LKB
grammar development system (Copestake 2002), which is freely available at http://
www.delph-in.net/lkb. This means that users of the LKB now have easy access to
our solver, which is considerably faster than the original MRS solver. The integration
between LKB and Utool is achieved via two Lisp source files that we distribute in the
directory tools/lkb.

If you load the file lkb-utool.lisp into the Lisp console of a running LKB system, the
internal MRS solver is replaced by Utool. Technically, this file defines a function that
sends the MRS (in mrs-prolog syntax) to a Utool Server running on the local machine
on port 2802. It will then receive the solved forms from the server, in plugging-lkb
syntax, and pass them back to LKB.

Alternatively, if you load the file lkb-utool-menu.lisp into the Lisp console, two new
commands are added to the context menu for parse trees (see Fig. 2). The command
“Scoped MRS (utool solve)” calls Utool to compute all scopings of the MRS for this parse
tree, in the same way as just described. On the other hand, the “Display MRS” command
will ask the Utool Server to perform a display command for the given MRS. You can
then solve and further manipulate the USR from the GUI. As before, these commands
also make the assumption that a Utool Server is running on the local machine, port 2802.

If your Utool server is running anywhere that’s not localhost:2802, you can

tools/client
http://www.delph-in.net/lkb
http://www.delph-in.net/lkb
tools/lkb

5 UTOOL IN PRACTICE 44

Figure 2: Calling Utool from an LKB context menu.

change the host and/or port by setting the variables utool::*utool-host* and
utool::*utool-port* to the values you want in the Lisp console.

One thing to keep in mind when using LKB together with Utool is that LKB seems to
use the Latin-1 character encoding when sending USRs over the socket. It would be nice
if LKB could be made to send UTF-8, but we haven’t managed to figure out how this
is done. However, you can always make Utool expect the Latin-1 character encoding, as
described in Section 5.1.

5.4 Extracting USRs from a HPSG treebank

The English Resource Grammar (ERG; Copestake and Flickinger 2000) is distributed
together with a collection of hand-annotated corpora that contains for each sentence from
the corpus the preferred syntactic analysis and a corresponding underspecified semantic
representation based upon MRS. These corpora are extremely valuable resources because
corpora with deep semantic information are so very rare, and we have occasionally used
them in experiments (Fuchss et al. 2004; Flickinger et al. 2005).

In order to use the MRS structures in these treebanks from within Utool, it is necessary
to extract them from the treebank and save them in individual files. This can be done
by using the script extract-gold.lisp, which can be found in the directory tools/lkb
in the Utool jar file. Proceed as follows:

tools/lkb

5 UTOOL IN PRACTICE 45

1. Start the LKB system.

2. Locate the treebank file on your filesystem. Here we will assume that we are working
with the Rondane treebank, which is located in erg/gold/rondane under the main
ERG directory. The rondane directory contains a file result.gz, which contains
the actual annotations and has to be unzipped first.

3. Run the following commands in the LKB’s Lisp console:

(load "extract-gold")
(utool::extract-prolog "erg/gold/rondane/result" "target-directory")

You need to replace target-directory with the name of the directory in which
you want the individual MRSs stored. This will create a number of files with the
extension .mrs.pl, one for each sentence in the treebank. These files are suitable
for reading with the mrs-prolog input codec.

4. If you want MRSs in XML format instead, call utool::extract-xml rather than
utool::extract-prolog. The arguments of both calls are the same.

5. If you pass the additional argument :solve t to the extract-prolog call, the
MRS constraint solver is applied to each MRS expression, and the number of fully
scoped MRS expressions is stored in a file log in the target directory. This can be
useful to compare the results of the MRS solver and Utool, but can take quite a
while.

The extract functions will work with the treebanks that are distributed together with the
ERG under the erg/gold directory, but they will not work directly with the Redwoods
corpus (Oepen et al. 2002), which is distributed separately and uses a different internal
format. See e.g. http://wiki.delph-in.net/moin/RedwoodsTop for more information
about the Redwoods corpus, and how MRS structures can be extracted.

5.5 Benchmarks

Utool is the fastest solver for underspecified descriptions in the formalisms of dominance
constraints, dominance graphs, Hole Semantics, and MRS that exists today. This is
supported by theoretical complexity results (Althaus et al. 2003; Bodirsky et al. 2004;
Koller and Thater 2005), and we have previously claimed practical efficiency in various
publications.

We will now sketch how such claims of practical efficiency can be substantiated. In doing
so, we will also establish the fact that the Java implementation of Utool is not slower than
the earlier C++ implementations of Utool under Linux and Windows, and is in fact a
little faster on Windows. We will not report detailed results for MacOS, but the situation

erg/gold/rondane
http://wiki.delph-in.net/moin/RedwoodsTop

5 UTOOL IN PRACTICE 46

0

0

1

10

100

1000

10000

100000

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Constraint size

Ru
nt

im
e

[m
s]

Windows / C++ Windows / Java 1.5 Client
Windows / Java 1.6 Client Windows / Java 1.5 Server
Windows / Java 1.6 Server Linux / C++
Linux / Java 1.5 Client Linux / Java 1.6 Client
Linux / Java 1.5 Server Linux / Java 1.6 Server

0

20

40

60

80

100

120

140

4 7 10 13 16 19 22 25 28 31 34 39

Constraint size

Ru
nt

im
e

[m
s]

Windows / C++ Windows / Java 1.5 Client
Windows / Java 1.6 Client Windows / Java 1.5 Server
Windows / Java 1.6 Server Linux / C++
Linux / Java 1.5 Client Linux / Java 1.6 Client
Linux / Java 1.5 Server Linux / Java 1.6 Server

Figure 3: Runtimes for the commands solvable (left) and solve -n (right) of Utool
2.0.1 (C++) and 3.0 (Java) on Windows and Linux.

is roughly that Java on PowerPC Macs seems to be very slow, but the performance on
Intel Macs seems to be comparable with the other platforms on the same processor.

As our benchmark example, we chose the Jotenheimen corpus, which like the Rondane
corpus (cf. Section 5.4 above) is distributed together with the English Resource Gram-
mar. The corpus contains analyses for 5135 sentences together with corresponding se-
mantic representations based upon MRS. We extracted the MRS structures as described
in Section 5.4 above and translated them into dominance graphs. Of the 5135 MRS
structures in the corpus, 441 could not be translated, so we base the evaluation on a
dataset of 4694 dominance graphs.

Then we ran the commands utool solvable (measuring how long it takes to compute
the chart and count all solved forms) and utool solve -n (measuring how long it takes
to compute the chart and then extract all solved forms, without actually encoding or
displaying them) on all dominance graphs with at most one million solved forms. We did
this using both Utool 2.0.1 (the last C++ version) and Utool 3.0 (the first Java version)
on all sentences. We ran Utool 3.0 in server mode (using utool server) to eliminate
the overhead for starting up the JVM.

We performed the benchmarks using a machine with a Pentium M processor at 1.6 GHz,
both on Windows XP Professional and on Linux 2.6.10. Utool 2.0.1 was compiled with
Gnu C++ 4.0 under Linux and with the C++ compiler from the Microsoft Visual C++
Toolkit 2003. We ran Utool 3.0 both using Java SE 5.0 and using a beta version of
Java SE 6.0; in both cases, we ran the JVM both in client and in server mode (with the
-server JVM flag).

The results of these benchmarks are shown in Fig. 3. Both charts plot the size of the
underspecified description (number of fragments in the dominance graph) on the X axis
and the mean runtime for USRs of this size on the Y axis. Notice that the Y axis is
logarithmic in the left-hand picture. Looking at the charts, we can make the following
observations:

6 BUILDING UTOOL 47

1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

1,00E+05

1,00E+06

1,00E+07

2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Constraint size

Ch
ar

t s
iz

e/
#S

ol
ut

io
ns

Solutions Chart

Figure 4: The size of the chart as compared to the number of solved forms described by
the chart, for all dominance graphs in the Jotenheimen corpus with up to 25 fragments.

• The mean time for computing a chart is dramatically lower than the time for
enumerating all solved forms. This is unsurprising, as the number of solved forms
of a graph is typically much higher (and grows much faster with the graph size)
than the number of splits in its chart (Fig. 4).

• Running Java in server mode is generally much faster than running it in client
mode.

• Even the beta version of Java 6.0 is noticeably more efficient than Java 5.0.

• The difference in performance between Utool 2.0.1 and Utool 3.0 running on Java
6.0 in server mode is negligible under Linux. Under Windows, the Java version is
more efficient (although it is conceivable that the Visual C++ compiler supports
optimisations that we weren’t aware of).

6 Building Utool

So far, we have focused on how to use the complete Utool system as you download it,
unchanged. This is sufficient in many scenarios – you can access Utool from the command
line, you can connect to it as a server, and you can even implement your own Java classes
that use our classes directly and add new codecs, as long as you simply add Utool.jar
to your classpath. But there may be a point at which you want to recompile Utool.
For such cases, we will now document how to unpack the Utool source distribution and
recompile it.

7 CONCLUSION 48

The Jar file Utool-<version>.jar which you probably downloaded from the website
only contains the compiled class files that are necessary for running the programme.
This is the standard distribution because it is pretty small, and thus downloads and
loads quickly.

If you want to recompile (parts of) Utool, you will need to download the source distribu-
tion. The source distribution has a filename of the form Utool-src-<version>.jar, and
is some 4 megabytes in size. In addition to the Utool classes, it contains the source code
of Utool, all classes of the iText, JGraphT, JGraph, and Getopt libraries that we use,
and the javacc and testng Jars that are used in compiling Utool. The files in the source
distribution Jar are in exactly the same locations as in the ordinary Jar, so in particu-
lar you can use the command java -jar Utool-src-<version>.jar to run Utool. In
addition, you need the Java JDK 5.0 or higher, and you need Apache Ant 1.6 or higher.

Recompilation of Utool from the source distribution proceeds as follows:

1. Unpack the Jar file in a new directory:

$ jar xf Utool-src-<version>.jar

2. Prepare for compiling by moving all files to the directories where the build script
expects them:

$ ant prepare

3. Change or add classes as you like. The source code of all classes is under the
directory src. If you add new classes, you may have to edit the Ant build script in
build.xml.

4. Recompile as follows:

$ ant

This will create the file Utool-<version>.jar in the directory build/lib, which
you can run using java -jar as before.

7 Conclusion

In this document, we have described Utool, the Swiss Army Knife of Underspecification.
In particular, we have explained how to use Utool and how to extend Utool, and listed
some tips and experiences on using Utool in practice.

We are sure that there are many things that we can improve. We would therefore greatly
appreciate any comments or suggestions that you might have. Please send them to
koller@coli.uni-sb.de, and we will try to take them into account for the next version.

build.xml
koller@coli.uni-sb.de

REFERENCES 49

In addition, we would be thrilled to hear about your experiences in using Utool. If there
is something about it that you like, if you use it in a way that we hadn’t envisioned,
or if you find bugs, please send us an email and give us some feedback. In addition, if
you write code that has anything to do with Utool (such as a front-end for using it from
another programming language), we would be excited to include it in a future release as
a contributed component.

We hope you will enjoy using Utool!

References

Althaus, E., D. Duchier, A. Koller, K. Mehlhorn, J. Niehren, and S. Thiel (2003). An
efficient graph algorithm for dominance constraints. Journal of Algorithms 48 (1),
194–219.

Blackburn, P. and J. Bos (2005). Representation and Inference for Natural Language:
A First Course in Computational Semantics. CSLI Publications.

Bodirsky, M., D. Duchier, J. Niehren, and S. Miele (2004). A new algorithm for normal
dominance constraints. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA).

Bos, J. (1996). Predicate logic unplugged. In Proc. 10th Amsterdam Colloquium, 133–
143.

Copestake, A. (2002). Implementing Typed Feature Structure Grammars. Stanford,
CA: CSLI Publications.

Copestake, A. and D. Flickinger (2000). An open-source grammar development en-
vironment and broad-coverage english grammar using HPSG. In Conference on
Language Resources and Evaluation.

Copestake, A., D. Flickinger, and I. Sag (1999). Minimal Recursion Semantics. An
Introduction. Unpublished manuscript, available at http://www.cl.cam.ac.uk/
∼aac10/papers/newmrs.pdf.

van Deemter, K. and S. Peters (1996). Semantic Ambiguity and Underspecification.
Stanford: CSLI.

Egg, M., A. Koller, and J. Niehren (2001). The constraint language for lambda struc-
tures. Journal of Logic, Language, and Information 10, 457–485.

Flickinger, D., A. Koller, and S. Thater (2005). A new well-formedness criterion for se-
mantics debugging. In Proceedings of the 12th International Conference on HPSG,
Lisbon.

Fuchss, R., A. Koller, J. Niehren, and S. Thater (2004). Minimal recursion semantics
as dominance constraints: Translation, evaluation, and analysis. In Proceedings of
the 42nd ACL, Barcelona.

http://www.cl.cam.ac.uk/~aac10/papers/newmrs.pdf
http://www.cl.cam.ac.uk/~aac10/papers/newmrs.pdf

REFERENCES 50

Koller, A. (2004). Constraint-based and graph-based resolution of ambiguities in natural
language. Ph. D. thesis, Universität des Saarlandes.

Koller, A., J. Niehren, and S. Thater (2003). Bridging the gap between underspecifi-
cation formalisms: Hole semantics as dominance constraints. In Proceedings of the
11th EACL, Budapest.

Koller, A. and S. Thater (2005). The evolution of dominance constraint solvers. In
Proceedings of the ACL-05 Workshop on Software, Ann Arbor.

Koller, A. and S. Thater (2006). An improved redundancy elimination algorithm for
underspecified descriptions. In Proceedings of the 44th ACL/21st COLING, Sydney.

Niehren, J. and S. Thater (2003). Bridging the gap between underspecification for-
malisms: Minimal recursion semantics as dominance constraints. In 41st Meeting
of the Association of Computational Linguistics, 367–374.

Oepen, S., K. Toutanova, S. Shieber, C. Manning, D. Flickinger, and T. Brants (2002).
The LinGO Redwoods treebank: Motivation and preliminary applications. In Pro-
ceedings of the 19th International Conference on Computational Linguistics (COL-
ING’02), 1253–1257.

	Introduction
	A tutorial walkthrough
	Installation
	The Underspecification Workbench
	Running Utool from the command line
	The Utool Server

	Using Utool
	Command-line interface
	Server mode
	Passing USRs
	Exit codes
	The commands supported by Utool
	Pseudo-commands
	Advanced options
	Options overview

	Codecs
	The domcon-oz codecs
	The domgraph-gxl codecs
	The MRS input codecs
	The holesem-comsem input codec
	The domgraph-udraw and domgraph-dot output codecs
	The plugging output codecs
	The term output codecs
	The chain input codec
	Writing your own codecs

	Utool in Practice
	Some practical tips
	Writing your own client for the Utool Server
	Integration with the LKB Workbench
	Extracting USRs from a HPSG treebank
	Benchmarks

	Building Utool
	Conclusion

